11판/4. 2차원 운동과 3차원 운동

4-28 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 2. 5. 15:40

{v0=16.0[m/s],θ0g=9.80665[m/s2] \begin{cases} v_0&=16.0\ut{m/s}, \theta_0\\g&=9.80665\ut{m/s^2} \end{cases} (a,b)\ab{a,b} Δx=vxt=v0cosθ0t \begin{aligned} \Delta x=v_xt\\ =v_0\cos\theta_0t \end{aligned} S=v0t+12at2,Δy=vy0t+12(g)t2=(v0sinθ0)t12gt2 \begin{aligned} S=v_0t+\frac{1}{2}at^2,\\ \Delta y=v_{y0}t+\frac{1}{2}(-g)t^2\\ =(v_0\sin\theta_0)t-\frac{1}{2}gt^2\\ \end{aligned} Δy=(v0sinθ0)t12gt20,\Delta y=(v_0\sin\theta_0)t-\frac{1}{2}gt^2\ge 0, 0t32sinθ0g\therefore 0\le t \le \frac{32 \sin \theta_0}{g} r(θ0,t)=(v0cosθ0t)2+{(v0sinθ0)t12gt2}2=12t2(g2t24gtv0sinθ0+4v02)=12t2(g2t264gtsinθ0+1024) \begin{aligned} r(\theta_0,t)=\sqrt{\(v_0\cos\theta_0t\)^2+\bra{(v_0\sin\theta_0)t-\frac{1}{2}gt^2}^2}\\ =\frac{1}{2} \sqrt{t^2 \(g^2 t^2-4 g t v_0 \sin\theta_0+4 {v_0}^2\)}\\ =\frac{1}{2} \sqrt{t^2 \(g^2 t^2-64 g t \sin\theta_0+1024\)}\\ \end{aligned} (a)\ab{a} r(40°,t)=12t2(g2t264gtsin40°+1024)145.324t2+10.2846tt32sin40°g2.09748[s] \begin{aligned} r(40\degree,t)=\frac{1}{2} \sqrt{t^2 \(g^2 t^2-64 g t \sin40\degree+1024\)}\\ \approx \sqrt{145.324 t^2+10.2846 t}\\ t \le \frac{32\sin40\degree}{g}\approx 2.09748\ut{s}\\ \end{aligned} (b)\ab{b} r(80°,t)=12t2(g2t264gtsin80°+1024)2.81602t2+15.7569tt32sin80°g3.21352[s] \begin{aligned} r(80\degree,t)=\frac{1}{2} \sqrt{t^2 \(g^2 t^2-64 g t \sin80\degree+1024\)}\\ \approx \sqrt{2.81602 t^2+15.7569 t}\\ t \le \frac{32\sin80\degree}{g}\approx 3.21352\ut{s}\\ \end{aligned}  


 ⁣dr ⁣dt= ⁣d ⁣dt(12t2(g2t264gtsinθ0+1024))=t(g2t248gtsinθ0+512)t2(g2t264gtsinθ0+1024) \begin{aligned} \dxt{r}&=\dt\(\frac{1}{2} \sqrt{t^2 \(g^2 t^2-64 g t \sin\theta_0+1024\)}\)\\ &=\frac{t \(g^2 t^2-48 g t \sin\theta_0+512\)}{\sqrt{t^2 \(g^2 t^2-64 g t \sin\theta_0+1024\)}}\\ \end{aligned} (c,d)\ab{c,d}  ⁣d ⁣dtr(40°,t)=t(g2t248gtsin40°+512)t2(g2t264gtsin40°+1024)>0(t32sin40°g) \begin{aligned} \dt r(40\degree,t)&=\frac{t \(g^2 t^2-48 g t \sin40\degree+512\)}{\sqrt{t^2 \(g^2 t^2-64 g t \sin40\degree+1024\)}}\gt0\\ &\(t\le\frac{32\sin40\degree}{g}\)\\ \end{aligned} r(40°,t)max=r(40°,32sin40°g) \begin{aligned} \therefore r(40\degree,t)_{\max}&=r\(40\degree,\frac{32\sin40\degree}{g}\)\\ \end{aligned} (c)\ab{c} t40=32sin40°g2.097475030715816[s]2.10[s] \begin{aligned} t_{40}&=\frac{32\sin40\degree}{g}\\ &\approx 2.097475030715816\ut{s}\\ &\approx 2.10\ut{s}\\ \end{aligned} (d)\ab{d} r(40°,t)=12t2(g2t264gtsin40°+1024),Ans=r(40°,32sin40°g)25.70814546977054[m]25.7[m] \begin{aligned} r(40\degree,t)&=\frac{1}{2} \sqrt{t^2 \(g^2 t^2-64 g t \sin40\degree+1024\)},\\ \Ans&=r\(40\degree,\frac{32\sin40\degree}{g}\)\\ &\approx 25.70814546977054\ut{m}\\ &\approx 25.7\ut{m}\\ \end{aligned} (e,f)\ab{e,f} r(θ0,t)=(v0cosθ0t)i^+(v0sinθ0t12gt2)j^rmax=r(40°,32sin40°g)=256cos10°gi^ \begin{aligned} \vec r(\theta_0,t) &= (v_0\cos\theta_0t)\i+\(v_0\sin\theta_0t-\frac{1}{2}gt^2\)\j\\ \vec r_{\max}&=\vec r\(40\degree,\frac{32\sin40\degree}{g}\)\\ &=\frac{256 \cos10\degree}{g}\i\\ \end{aligned} (e)\ab{e} Ans=rx(40°,32sin40°g)=256cos10°g25.70814546977054[m]25.7[m] \begin{aligned} \Ans&=r_x\(40\degree,\frac{32\sin40\degree}{g}\)\\ &=\frac{256 \cos10\degree}{g}\\ &\approx 25.70814546977054\ut{m}\\ &\approx 25.7\ut{m} \end{aligned} (f)\ab{f} Ans=ry(40°,32sin40°g)=0 \begin{aligned} \Ans&=r_y\(40\degree,\frac{32\sin40\degree}{g}\)\\ &=0\\ \end{aligned} (g,h)\ab{g,h}  ⁣d ⁣dtr(80°,t)=t(g2t248gtsin80°+512)t2(g2t264gtsin80°+1024)=0(t32sin80°g) \begin{aligned} \dt r(80\degree,t)&=\frac{t \(g^2 t^2-48 g t \sin80\degree+512\)}{\sqrt{t^2 \(g^2 t^2-64 g t \sin80\degree+1024\)}}=0\\ &\(t\le\frac{32\sin80\degree}{g}\)\\ \end{aligned} t=4g(6cos10°±18cos20°14)tmax=4g(6cos10°18cos20°14) \begin{aligned} t&=\frac{4 }{g}\(6 \cos 10\degree\pm\sqrt{18 \cos 20\degree-14}\)\\ t_{\max}&= \frac{4 }{g}\(6 \cos 10\degree-\sqrt{18 \cos 20\degree-14}\) \end{aligned} (g)\ab{g} tmax=4g(6cos10°18cos20°14)1.713802555341173[s]1.71[s] \begin{aligned} t_{\max}&= \frac{4 }{g}\(6 \cos 10\degree-\sqrt{18 \cos 20\degree-14}\)\\ &\approx 1.713802555341173\ut{s}\\ &\approx 1.71\ut{s}\\ \end{aligned} (h)\ab{h} r(80°,t)=12t2(g2t264gtsin80°+1024),Ans=r(80°,tmax)13.47213163396955[m]13.5[m] \begin{aligned} r(80\degree,t)&=\frac{1}{2} \sqrt{t^2 \(g^2 t^2-64 g t \sin80\degree+1024\)},\\ \Ans&=r\(80\degree,t_{\max}\)\\ &\approx 13.47213163396955\ut{m}\\ &\approx 13.5\ut{m}\\ \end{aligned} (i,j)\ab{i,j} r(θ0,t)=(v0cosθ0t)i^+(v0sinθ0t12gt2)j^rmax=r(80°,tmax)=64sin10°(2(9cos20°7)6cos10°)gi^+32(3cos20°+cos10°2(9cos20°7)+5)gj^ \begin{aligned} \vec r(\theta_0,t) &= (v_0\cos\theta_0t)\i+\(v_0\sin\theta_0t-\frac{1}{2}gt^2\)\j\\ \vec r_{\max}=&\vec r\(80\degree,t_{\max}\)\\ =&-\frac{64 \sin10\degree \(\sqrt{2 (9 \cos20\degree-7)}-6 \cos10\degree\)}{g}\i\\&+\frac{32 \(-3 \cos20\degree+\cos10\degree\sqrt{2 (9 \cos20\degree-7)}+5\)}{g}\j \end{aligned} (i)\ab{i} Ans=rx(80°,tmax)=64sin10°(2(9cos20°7)6cos10°)g4.761579049854769[m]4.76[m] \begin{aligned} \Ans&=r_x\(80\degree,t_{\max}\)\\ &=-\frac{64 \sin10\degree \(\sqrt{2 (9 \cos20\degree-7)}-6 \cos10\degree\)}{g}\\ &\approx 4.761579049854769\ut{m}\\ &\approx 4.76\ut{m} \end{aligned} (f)\ab{f} Ans=ry(80°,tmax)=32(3cos20°+cos10°2(9cos20°7)+5)g12.602606703178[m]12.6[m] \begin{aligned} \Ans&=r_y\(80\degree,t_{\max}\)\\ &=\frac{32 \(-3 \cos20\degree+\cos10\degree\sqrt{2 (9 \cos20\degree-7)}+5\)}{g}\\ &\approx 12.602606703178\ut{m}\\ &\approx 12.6\ut{m} \end{aligned}