11판/3. 벡터

3-35 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 24. 21:58
{a=ai^b=bj^d>0 \begin{cases} \vec a &= a\i\\ \vec b &= -b\j\\ d&>0 \end{cases} (a)\ab{a} bd=bj^d=bdj^ \begin{aligned} \frac{\vec b}{d}&=\frac{-b\j}{d}\\ &=-\frac{b}{d}\j\\ \end{aligned} bd<0-\frac{b}{d}\lt0 y\therefore -y (b)\ab{b} bd=bj^d=bdj^ \begin{aligned} \frac{\vec b}{-d}&=\frac{-b\j}{-d}\\ &=\frac{b}{d}\j\\ \end{aligned} bd>0\frac{b}{d}\gt0 +y\therefore +y (c)\ab{c} ab=a0+0(b)=0 \begin{aligned} \vec a \cdot \vec b &=a\cdot0+0\cdot(-b)\\ &=0 \end{aligned} (d)\ab{d} abd=a0+0(b)d=0 \begin{aligned} \frac{\vec a \cdot \vec b}{d} &=\frac{a\cdot0+0\cdot(-b)}{d}\\ &=0 \end{aligned} (e)\ab{e} a×b=(ai^)×(bj^)=ab(i^×j^)=abk^ \begin{aligned} \vec a \times \vec b &=\(a\i\)\times\(-b\j\)\\ &=-ab\(\i\times\j\)\\ &=-ab\k \end{aligned} z\therefore -z (f)\ab{f} b×a=(bj^)×(ai^)=ab(j^×i^)=ab(1)(i^×j^)=abk^ \begin{aligned} \vec b \times \vec a &=\(-b\j\)\times\(a\i\)\\ &=-ab\(\j\times\i\)\\ &=-ab(-1)\(\i\times\j\)\\ &=ab\k \end{aligned} +z\therefore +z (g)\ab{g} a×b=abk^=ab \begin{aligned} \abs{\vec a \times \vec b} &=\abs{-ab\k}\\ &=ab \end{aligned} (h)\ab{h} b×a=abk^=ab \begin{aligned} \abs{\vec b \times \vec a} &=\abs{ab\k}\\ &=ab \end{aligned} (i,j)\ab{i,j} a×bd=abk^d=abdk^ \begin{aligned} \frac{\vec a \times \vec b}{d} &=\frac{-ab\k}{d}\\ &=-\frac{ab}{d}\k\\ \end{aligned} (i)\ab{i} a×bd=abdk^=abd \begin{aligned} \abs{\frac{\vec a \times \vec b}{d}} &=\abs{-\frac{ab}{d}\k}\\ &=\frac{ab}{d} \end{aligned} (j)\ab{j} a×bd=abdk^ \begin{aligned} \frac{\vec a \times \vec b}{d} &=-\frac{ab}{d}\k\\ \end{aligned} z\therefore -z