$$ \begin{cases}
\vec a &= a\i\\
\vec b &= -b\j\\
d&>0
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
\frac{\vec b}{d}&=\frac{-b\j}{d}\\
&=-\frac{b}{d}\j\\
\end{aligned} $$
$$-\frac{b}{d}\lt0$$
$$\therefore -y$$
$$\ab{b}$$
$$ \begin{aligned}
\frac{\vec b}{-d}&=\frac{-b\j}{-d}\\
&=\frac{b}{d}\j\\
\end{aligned} $$
$$\frac{b}{d}\gt0$$
$$\therefore +y$$
$$\ab{c}$$
$$ \begin{aligned}
\vec a \cdot \vec b &=a\cdot0+0\cdot(-b)\\
&=0
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
\frac{\vec a \cdot \vec b}{d} &=\frac{a\cdot0+0\cdot(-b)}{d}\\
&=0
\end{aligned} $$
$$\ab{e}$$
$$ \begin{aligned}
\vec a \times \vec b &=\(a\i\)\times\(-b\j\)\\
&=-ab\(\i\times\j\)\\
&=-ab\k
\end{aligned} $$
$$\therefore -z$$
$$\ab{f}$$
$$ \begin{aligned}
\vec b \times \vec a &=\(-b\j\)\times\(a\i\)\\
&=-ab\(\j\times\i\)\\
&=-ab(-1)\(\i\times\j\)\\
&=ab\k
\end{aligned} $$
$$\therefore +z$$
$$\ab{g}$$
$$ \begin{aligned}
\abs{\vec a \times \vec b} &=\abs{-ab\k}\\
&=ab
\end{aligned} $$
$$\ab{h}$$
$$ \begin{aligned}
\abs{\vec b \times \vec a} &=\abs{ab\k}\\
&=ab
\end{aligned} $$
$$\ab{i,j}$$
$$ \begin{aligned}
\frac{\vec a \times \vec b}{d} &=\frac{-ab\k}{d}\\
&=-\frac{ab}{d}\k\\
\end{aligned} $$
$$\ab{i}$$
$$ \begin{aligned}
\abs{\frac{\vec a \times \vec b}{d}} &=\abs{-\frac{ab}{d}\k}\\
&=\frac{ab}{d}
\end{aligned} $$
$$\ab{j}$$
$$ \begin{aligned}
\frac{\vec a \times \vec b}{d} &=-\frac{ab}{d}\k\\
\end{aligned} $$
$$\therefore -z$$
'11판 > 3. 벡터' 카테고리의 다른 글
3-37 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.25 |
---|---|
3-36 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.25 |
3-34 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-33 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-32 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |