$$ \begin{cases}
\vec a&=7.00\ut{m}\i\\
b&=5.00\ut{m},\theta_b=90\degree+35\degree\\
\end{cases} $$
$$ \begin{aligned}
\vec b &= 5\cos125\degree\i+5\sin125\degree\j\\
\end{aligned} $$
$$\ab{a,b}$$
$$ \begin{aligned}
\vec c &= \vec a+\vec b\\
&=\(7-5 \sin35\degree\)\i+5 \cos35\degree\j\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
c&=\sqrt{\(7-5 \sin35\degree\)^2+(5\cos35\degree)^2}\\
&=\sqrt{74-70 \sin35\degree}\ut{m}\\
&\approx 5.818045157561668\ut{m}\\
&\approx 5.82\ut{m}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\theta_c&=\tan ^{-1}\frac{5 \cos35\degree}{7-5 \sin35\degree}\\
&\approx 0.7809793618562755\ut{rad}\\
&\approx 0.781\ut{rad}\\
\end{aligned} $$
$$\ab{c,d}$$
$$ \begin{aligned}
\vec d &= \vec b-\vec a\\
&=\(-7-5 \sin35\degree\)\i+5 \cos35\degree\j\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
c&=\sqrt{\(-7-5 \sin35\degree\)^2+(5\cos35\degree)^2}\\
&=\sqrt{74+70 \sin35\degree}\ut{m}\\
&\approx 10.6841167414332\ut{m}\\
&\approx 10.7\ut{m}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\theta_c&=\tan ^{-1}\frac{5 \cos35\degree}{-7-5 \sin35\degree}\\
&\approx 2.748171564069984\ut{rad}\\
&\approx 2.75\ut{rad}\\
\end{aligned} $$
'11판 > 3. 벡터' 카테고리의 다른 글
3-35 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
---|---|
3-34 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-32 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-31 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-30 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |