11판/3. 벡터

3-31 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 24. 19:49
{d1=6.00[m],θ1=135°d2=4.00[m]i^d3=8.00[m],θ3=60.0° \begin{cases} d_1&=6.00\ut{m},\theta_{1}=-135\degree\\ \vec d_2&=4.00\ut{m}\i\\ d_3&=8.00\ut{m},\theta_{3}=60.0\degree\\ \end{cases} (a)\ab{a} d1x=6cos(135°)=32[m]4.242640687119286[m]4.24[m] \begin{aligned} d_{1x}&=6\cos\(-135\degree\)\\ &=-3\sqrt2\ut{m}\\ &\approx -4.242640687119286\ut{m}\\ &\approx -4.24\ut{m} \end{aligned} (b)\ab{b} d1y=6sin(135°)=32[m]4.242640687119286[m]4.24[m] \begin{aligned} d_{1y}&=6\sin\(-135\degree\)\\ &=-3\sqrt2\ut{m}\\ &\approx -4.242640687119286\ut{m}\\ &\approx -4.24\ut{m} \end{aligned} (c)\ab{c} d2x=4.00[m] d_{2x}=4.00\ut{m} (d)\ab{d} d2y=0 d_{2y}=0 (e)\ab{e} d3x=8cos(60°)=4[m]=4.00[m] \begin{aligned} d_{3x}&=8\cos\(60\degree\)\\ &=4\ut{m}\\ &=4.00\ut{m}\\ \end{aligned} (f)\ab{f} d3y=8sin(60°)=43[m]6.928203230275509[m]6.93[m] \begin{aligned} d_{3y}&=8\sin\(60\degree\)\\ &=4\sqrt3\ut{m}\\ &\approx 6.928203230275509\ut{m}\\ &\approx 6.93\ut{m}\\ \end{aligned} (g,h,i,j)\ab{g,h,i,j} Σd=d1+d2+d3=(32i^32j^)+(4i^)+(4i^+43j^)=(832)i^+(4332)j^ \begin{aligned} \Sigma \vec d&=\vec d_1+\vec d_2+\vec d_3\\ &=\(-3\sqrt2\i-3\sqrt2\j\)+\(4\i\)+\(4\i+4\sqrt{3}\j\)\\ &=\(8-3 \sqrt{2}\)\i+\(4 \sqrt{3}-3 \sqrt{2}\)\j\\ \end{aligned} (g)\ab{g} dx=(832)[m]3.757359312880714[m]3.76[m] \begin{aligned} d_x&=\(8-3 \sqrt{2}\)\ut{m}\\ &\approx 3.757359312880714\ut{m}\\ &\approx 3.76\ut{m}\\ \end{aligned} (h)\ab{h} dy=(4332)[m]2.685562543156223[m]2.69[m] \begin{aligned} d_y&=\(4 \sqrt{3}-3 \sqrt{2}\)\ut{m}\\ &\approx 2.685562543156223\ut{m}\\ &\approx 2.69\ut{m}\\ \end{aligned} (i)\ab{i} d=(832)2+(4332)2=23762(2+3)[m]4.618440773604783[m]4.62[m] \begin{aligned} d&=\sqrt{\(8-3 \sqrt{2}\)^2+\(4 \sqrt{3}-3 \sqrt{2}\)^2}\\ &=2 \sqrt{37-6 \sqrt{2} \left(2+\sqrt{3}\right)}\ut{m}\\ &\approx 4.618440773604783\ut{m}\\ &\approx 4.62\ut{m}\\ \end{aligned} (j)\ab{j} θd=tan143328320.6205550848427059[rad]0.621[rad] \begin{aligned} \theta_d&=\tan^{-1}\frac{4 \sqrt{3}-3 \sqrt{2}}{8-3 \sqrt{2}}\\ &\approx 0.6205550848427059\ut{rad}\\ &\approx 0.621\ut{rad}\\ \end{aligned} (k,l)\ab{k,l} Ans=dBack=d \begin{aligned} \Ans &=\vec d_{\text{Back}}= -\vec d\\ \end{aligned} (k)\ab{k} dB=d=23762(2+3)[m]4.618440773604783[m]4.62[m] \begin{aligned} d_B&=d\\ &=2 \sqrt{37-6 \sqrt{2} \left(2+\sqrt{3}\right)}\ut{m}\\ &\approx 4.618440773604783\ut{m}\\ &\approx 4.62\ut{m}\\ \end{aligned} (l)\ab{l} θd2=θd+π=π+tan143328322.521037568747087[rad]2.52[rad] \begin{aligned} \theta_{d_2}&=\theta_d+\pi\\ &=\pi+\tan^{-1}\frac{4 \sqrt{3}-3 \sqrt{2}}{8-3 \sqrt{2}}\\ &\approx -2.521037568747087\ut{rad}\\ &\approx -2.52\ut{rad}\\ \end{aligned}