$$ \begin{cases}
d_1&=6.00\ut{m},\theta_{1}=-135\degree\\
\vec d_2&=4.00\ut{m}\i\\
d_3&=8.00\ut{m},\theta_{3}=60.0\degree\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
d_{1x}&=6\cos\(-135\degree\)\\
&=-3\sqrt2\ut{m}\\
&\approx -4.242640687119286\ut{m}\\
&\approx -4.24\ut{m}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
d_{1y}&=6\sin\(-135\degree\)\\
&=-3\sqrt2\ut{m}\\
&\approx -4.242640687119286\ut{m}\\
&\approx -4.24\ut{m}
\end{aligned} $$
$$\ab{c}$$
$$ d_{2x}=4.00\ut{m} $$
$$\ab{d}$$
$$ d_{2y}=0 $$
$$\ab{e}$$
$$ \begin{aligned}
d_{3x}&=8\cos\(60\degree\)\\
&=4\ut{m}\\
&=4.00\ut{m}\\
\end{aligned} $$
$$\ab{f}$$
$$ \begin{aligned}
d_{3y}&=8\sin\(60\degree\)\\
&=4\sqrt3\ut{m}\\
&\approx 6.928203230275509\ut{m}\\
&\approx 6.93\ut{m}\\
\end{aligned} $$
$$\ab{g,h,i,j}$$
$$ \begin{aligned}
\Sigma \vec d&=\vec d_1+\vec d_2+\vec d_3\\
&=\(-3\sqrt2\i-3\sqrt2\j\)+\(4\i\)+\(4\i+4\sqrt{3}\j\)\\
&=\(8-3 \sqrt{2}\)\i+\(4 \sqrt{3}-3 \sqrt{2}\)\j\\
\end{aligned} $$
$$\ab{g}$$
$$ \begin{aligned}
d_x&=\(8-3 \sqrt{2}\)\ut{m}\\
&\approx 3.757359312880714\ut{m}\\
&\approx 3.76\ut{m}\\
\end{aligned} $$
$$\ab{h}$$
$$ \begin{aligned}
d_y&=\(4 \sqrt{3}-3 \sqrt{2}\)\ut{m}\\
&\approx 2.685562543156223\ut{m}\\
&\approx 2.69\ut{m}\\
\end{aligned} $$
$$\ab{i}$$
$$ \begin{aligned}
d&=\sqrt{\(8-3 \sqrt{2}\)^2+\(4 \sqrt{3}-3 \sqrt{2}\)^2}\\
&=2 \sqrt{37-6 \sqrt{2} \left(2+\sqrt{3}\right)}\ut{m}\\
&\approx 4.618440773604783\ut{m}\\
&\approx 4.62\ut{m}\\
\end{aligned} $$
$$\ab{j}$$
$$ \begin{aligned}
\theta_d&=\tan^{-1}\frac{4 \sqrt{3}-3 \sqrt{2}}{8-3 \sqrt{2}}\\
&\approx 0.6205550848427059\ut{rad}\\
&\approx 0.621\ut{rad}\\
\end{aligned} $$
$$\ab{k,l}$$
$$ \begin{aligned}
\Ans &=\vec d_{\text{Back}}= -\vec d\\
\end{aligned} $$
$$\ab{k}$$
$$ \begin{aligned}
d_B&=d\\
&=2 \sqrt{37-6 \sqrt{2} \left(2+\sqrt{3}\right)}\ut{m}\\
&\approx 4.618440773604783\ut{m}\\
&\approx 4.62\ut{m}\\
\end{aligned} $$
$$\ab{l}$$
$$ \begin{aligned}
\theta_{d_2}&=\theta_d+\pi\\
&=\pi+\tan^{-1}\frac{4 \sqrt{3}-3 \sqrt{2}}{8-3 \sqrt{2}}\\
&\approx -2.521037568747087\ut{rad}\\
&\approx -2.52\ut{rad}\\
\end{aligned} $$
'11판 > 3. 벡터' 카테고리의 다른 글
3-33 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
---|---|
3-32 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-30 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-29 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-28 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |