10판/3. 벡터

3-43 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 8. 12. 21:43

{a:(3.00[m],0)b:(4.00[m],30.0)c:(10.0[m],π2+30.0)\begin{cases} \vec a:(3.00\ut{m},0)\\ \vec b:(4.00\ut{m},30.0^\circ)\\ \vec c:(10.0\ut{m},\frac{\pi}{2}+30.0^\circ)\\ \end{cases}
(a)(b) a=3i^, \vec a = 3\i,
(a)ax=?a_x=? ax=3.00a_x = 3.00
(b)ay=?a_y=? ay=0a_y = 0
(c)(d) b=4cos30.0i^+4sin30.0j^=23i^+2j^ \begin{aligned} \vec b =& 4\cos30.0^\circ\i+4\sin30.0^\circ\j\\ =&2\sqrt3\i+2\j\\ \end{aligned}
(c)bx=?b_x=? bx=233.46 b_x=2\sqrt3 \approx3.46
(d)by=?b_y=? by=2.00 b_y=2.00
(e)(f) c=10cos(π2+30.0)i^+10sin(π2+30.0)j^=5i^+53j^, \begin{aligned} \vec c =& 10\cos\(\frac{\pi}{2}+30.0^\circ\)\i+10\sin\(\frac{\pi}{2}+30.0^\circ\)\j\\ =&-5\i+5\sqrt3\j, \end{aligned}
(e)cx=?c_x=? cx=5.00 c_x=5.00
(f)cy=?c_y=? cy=538.66 c_y=5\sqrt3\approx 8.66
(g),(h)c=pa+qb\vec c = p\vec a+ q\vec b c=pa+qb5i^+53j^=p(3i^)+q(23i^+2j^)=(3p+23q)i^+(2q)j^ \begin{aligned} \vec c =& p\vec a+ q\vec b\\ -5\i+5\sqrt3\j=&p\(3\i\)+q\(2\sqrt3\i+2\j\)\\ =&\(3p+2\sqrt3q\)\i+\(2q\)\j \end{aligned} {5=3p+23q53=2q\begin{cases} -5= 3p+2\sqrt3q\\ 5\sqrt3=2q \end{cases}
(g)p=?p=? p=2036.67 p= -\frac{20}{3}\approx-6.67
(h)q=?q=? q=5234.33q= \frac{5 }{2}\sqrt3\approx 4.33