10판/3. 벡터

3-15 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 8. 6. 21:27

{a:(10.0,30)b:(10.0,30+105)\begin{cases} \vec a:(10.0, 30^\circ)\\ \vec b:(10.0, 30+105^\circ)\\ \end{cases} a=(10cos30)i^+(10sin30)j^=53i^+5j^ \begin{aligned} \vec a &= (10\cos30^\circ)\hat i + (10\sin30^\circ)\hat j\\ &=5\sqrt{3}\hat i + 5\hat j\\ \end{aligned} b=(10cos135)i^+(10sin135)j^=52i^+52j^ \begin{aligned} \vec b &= (10\cos135^\circ)\hat i + (10\sin135^\circ)\hat j\\ &=-5\sqrt2\hat i + 5\sqrt2\hat j\\ \end{aligned} r=(5352)i^+(5+52)j^\vec r = \(5\sqrt3-5\sqrt2\)\hat i + \(5+5\sqrt2\)\hat j
(a)r=?\abs{\vec r}=? r=(5352)2+(5+52)2=52(4+26)[m]12.2[m] \begin{aligned} r&=\sqrt{\(5\sqrt3-5\sqrt2\)^2+\(5+5\sqrt2\)^2}\\ &=5 \sqrt{2\left(4+\sqrt{2}-\sqrt{6}\right)}\ut{m}\\ &\approx 12.2\ut{m} \end{aligned}
(b)θr=?\theta_r=? θr=tan1(5+525352)=1124π1.44[rad]\theta_r=\tan^{-1}\(\frac{5+5\sqrt2}{5\sqrt3-5\sqrt2}\)=\frac{11}{24}\pi\approx1.44\ut{rad}