10판/3. 벡터

3-12 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 8. 6. 19:44

{p1=(40[km])i^p2=(30[km])j^p3:(25[km],9030)\begin{cases} \vec p_1 =\(40\ut{km} \)\hat i\\ \vec p_2 =\(30\ut{km} \)\hat j\\ \vec p_3:(25\ut{km},90^\circ-30^\circ)\\ \end{cases}

p3=(25cos30)i^+(25sin30)j^=(252)i^+(2523)j^ \begin{aligned} \vec p_3 &= (25\cos30^\circ )\hat i + (25\sin30^\circ )\hat j\\ &=\(\frac{25}{2} \)\hat i + \(\frac{25}{2}\sqrt3 \)\hat j \end{aligned} r=Σp=p1+p2+p3=(40+252)i^+(30+2523)j^=(1052)i^+(30+2523)j^ \begin{aligned} \vec r &= \Sigma \vec p=\vec p_1+\vec p_2+\vec p_3\\ &=\(40+\frac{25}{2} \)\hat i + \(30+\frac{25}{2}\sqrt3 \)\hat j\\ &=\(\frac{105}{2} \)\hat i + \(30+\frac{25}{2}\sqrt3 \)\hat j\\ \end{aligned}
(a)r=?r=? r=(1052)2+(30+2523)2=5165+303[km]74[km] \begin{aligned} r &= \sqrt{\(\frac{105}{2}\)^2+\(30+\frac{25}{2}\sqrt3 \)^2}\\ &=5 \sqrt{165+30 \sqrt{3}}\ut{km}\\ &\approx 74\ut{km} \end{aligned}
(b)θr=?\theta_r=? θr=tan1(30+25231052)=tan1(47+573)0.78[rad] \begin{aligned} \theta_r&=\tan^{-1}\(\frac{30+\frac{25}{2}\sqrt3}{\frac{105}{2}}\)\\ &=\tan^{-1}\left(\frac{4}{7}+\frac{5}{7\sqrt{3}}\right)\\ &\approx 0.78\ut{rad} \end{aligned}