11판/4. 2차원 운동과 3차원 운동 68

4-8 할리데이 11판 솔루션 일반물리학

$$ \begin{cases} \vec A &= 0\\ \vec B &= -90\ut{km}\i\\ \end{cases} $$ $$ \begin{cases} r_1&= 75\ut{km}, \theta_1=37\degree,t_1=55\ut{h}\\ \vec r_2&=-65\ut{km}\j, t_2=45\ut{h}\\ t_3&=5.0\ut{h}\\ \end{cases} $$ $$\ab{a}$$ $$ \begin{aligned} \Sigma \vec r&=\vec r_1 + \vec r_2\\ &=75\cos37\degree\i+(75\sin37\degree-65)\j\\ \end{aligned} $$ $$ \begin{aligned} r&=\sqrt{\(75\cos37\degree\)^2+(75\sin37..

4-7 할리데이 11판 솔루션 일반물리학

$$ \begin{cases} \theta_0&=60.0\degree\\ h&=2.60\ut{km}\\ d&=9.40\ut{km}\\ g&=9.80665\ut{m/s^2}\\ \end{cases} $$ $$ \begin{aligned} \Delta x &= v_x t,\\ d&= v_0\cos\theta t \end{aligned} $$ $$ \begin{aligned} S&=v_0t+\frac{1}{2}at^2,\\ \Delta y &=v_{y0}t+\frac{1}{2}(-g)t^2\\ -h &=v_0\sin\theta t-\frac{1}{2}gt^2\\ \end{aligned} $$ $$ \begin{cases} d&= v_0\cos\theta t\\ -h &=v_0\sin\theta t-\frac{..

4-6 할리데이 11판 솔루션 일반물리학

$$ \begin{cases} &t_1=4.0\ut{min},&v_1=50\ut{km/h}\\ \theta_{1\rarr2}=-90\degree,&t_2=3.0\ut{min},&v_2=20\ut{km/h}\\ \theta_{2\rarr3}=-90\degree,&t_3=60\ut{s},& v_3=20\ut{km/h}\\ \theta_{3\rarr4}=+90\degree,&t_4=60\ut{s},& v_4=50\ut{km/h}\\ \theta_{4\rarr5}=-90\degree,&t_5=2\ut{min},&v_5=20\ut{km/h}\\ \theta_{5\rarr6}=+90\degree,&t_5=30\ut{s},&v_6=50\ut{km/h}\\ \end{cases} $$ $$ \begin{cases} r_..

4-5 할리데이 11판 솔루션 일반물리학

$$ \begin{cases} \Delta y &= 300\ut{m}\\ \vec v_W&=1.8\i\ut{m/s}\\ v_{A\larr W}&=9.0\ut{m/s}\\ \theta_{A\larr W}&=90\degree+30\degree=120\degree\\ \end{cases} $$ $$ \begin{aligned} \vec v_{A\larr W}&=9\cos120\degree\i+9\sin120\degree\j\\ &=-\frac{9}{2}\i+\frac{9}{2}\sqrt3\j\ut{m/s}\\ \end{aligned} $$ $$ \begin{aligned} \vec v_A&=\vec v_{A\larr W}+\vec v_W\\ &=\(-\frac{9}{2}\i+\frac{9}{2}\sqrt3\j..

4-4 할리데이 11판 솔루션 일반물리학

$$ \begin{cases} P:\text{Plane}\\ A:\text{Air}\\ t_{\alpha}:\text{go out}\\ t_{\beta}:\text{come in}\\ \end{cases} $$ $$ \begin{cases} \Delta x &= 4000\ut{km}\\ v_{P\larr A}&= 1000\ut{km/h}\\ \Delta t_{\alpha\rarr\beta} &= 100.0\ut{min}=\cfrac{5}{3}\ut{h}\\ \end{cases} $$ $$ \begin{cases} v_{P\alpha} &= v_{P\larr A}+v_A\\ v_{P\beta} &= v_{P\larr A}-v_A \end{cases} $$ $$ \begin{cases} t_\alpha &=..

4-3 할리데이 11판 솔루션 일반물리학

$$ \begin{cases} v_{A0}=520\ut{m/s},& \theta_A=14.0\degree\\ v_{B0}=630\ut{m/s},& \theta_B=16.0\degree\\ v_{C0}=750\ut{m/s},& \theta_C=18.0\degree\\ v_{D0}=870\ut{m/s},& \theta_D=20.0\degree\\ v_{E0}=1000\ut{m/s},& \theta_E=22.0\degree\\ g=9.80665\ut{m/s^2} \end{cases} $$ $$ \begin{aligned} \Delta x &= v_xt\\ &=v_0t\cos\theta \end{aligned} $$ $$ \begin{aligned} \Delta y &=v_{y0}t+\frac{1}{2}(-g)..

4-2 할리데이 11판 솔루션 일반물리학

$$ \begin{cases} A:\text{Air}\\ P:\text{Plane}\\ \end{cases} $$ $$ \begin{cases} \vec v_A&=-30.0\ut{km/h}\j\\ \vec v_{P+ A}&=\vec v_P+\vec v_A\\ \vec v_{P+ A}&=v_{P+ A}\i+0\j\\ v_P&=60\ut{km/h}\\ \vec v_P&=v_P\cos\theta\i+v_P\sin\theta\j\\ \end{cases} $$ $$ \begin{aligned} \vec v_{P+ A}&=\vec v_P+\vec v_A,\\ v_{P+ A}\i+0\j&=\(60\cos\theta\i+60\sin\theta\j\)+(-30\j)\\ &=60\cos\theta\i+(60\sin\the..

4-1 할리데이 11판 솔루션 일반물리학

$$ \begin{cases} v&=14.0\ut{m/s}\\ \vec a_1&=2.50\ut{m/s^2}\i \end{cases} $$ $$ \begin{aligned} a &= \frac{v^2}{R}\\ 2.5&= \frac{14^2}{R}\\ \end{aligned} $$ $$ \begin{aligned} R&=\frac{14^2}{2.5}\\ &=\frac{392}{5}\ut{m}\\ &=78.4\ut{m}\\ \end{aligned} $$ $$\ab{a}$$ $$\vec a = -\omega^2\vec x,$$ $$ \begin{aligned} R_1&=78.4\ut{m}\\ \theta_1&=\pi\ut{rad} \end{aligned} $$ $$\ab{b}$$ $$ \begin{aligne..