$$ \begin{cases}
m&=300\ut{kg}\\
A&=2.0\times10^{-6}\ut{m^2}\\
L_1=L_3&=2.0000\ut{m}\\
L_2&=L_1+d\\
d&=6.00\ut{mm}\\
g&=9.80665\ut{m/s^2}\\
E_{\text{steel}}&=200\times10^9\ut{N/m^2}
\end{cases} $$
$${F\over A}=E{\Delta L\over L},$$
$$ \begin{cases}
F_1&=AE\cfrac{\Delta L_1}{L_1}\\
F_2&=AE\cfrac{\Delta L_2}{L_2}\\
\end{cases} $$
$$ \begin{cases}
F_1&=AE\cfrac{\Delta L_1}{L_1}\\
F_2&=AE\cfrac{\Delta L_1-d}{L_1+d}\\
\end{cases} $$
$$ \begin{cases}
F_1&=2 \Delta L_1\times10^5\\
F_2&=\cfrac{4 (500 \Delta L_1-3)}{1003}\times10^5\\
\end{cases} \taag1$$
$$ \begin{aligned}
\Sigma F_{y}&=0\\
&=2F_1+F_2-mg\\
&=2\br{AE\cfrac{\Delta L_1}{L_1}}+\br{AE\cfrac{\Delta L_1-d}{L_1+d}}-mg\\
\end{aligned} $$
$$ \begin{aligned}
\Delta L_1&=\frac{L_1 }{A E }\cdot\frac{A d E+ mg (d+L_1)}{ 2 d+3 L_1}\\
&=\frac{276721399}{40080000}\times10^{-3}\ut{m}\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
F_1&=AE\cfrac{\Delta L_1-d}{L_1+d}\\
&=\frac{276721399}{200400}\ut{N}\\
&\approx 1380.8453043912175\ut{N}\\
&\approx 1.4\times10^3\ut{N}\\
&\approx 1.4\ut{kN}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
F_2&=AE\cfrac{\Delta L_1}{L_1}\\
&=\frac{180665}{1002}\ut{N}\\
&\approx 180.30439121756487\ut{N}\\
&\approx 1.8\times10^2\ut{N}\\
\end{aligned} $$
'11판 > 12. 평형과 탄성' 카테고리의 다른 글
| 12-47 할리데이 11판 솔루션 일반물리학 (2) | 2025.08.03 |
|---|---|
| 12-46 할리데이 11판 솔루션 일반물리학 (0) | 2025.05.01 |
| 12-44 할리데이 11판 솔루션 일반물리학 (0) | 2025.05.01 |
| 12-43 할리데이 11판 솔루션 일반물리학 (0) | 2025.04.30 |
| 12-42 할리데이 11판 솔루션 일반물리학 (0) | 2025.04.30 |