$$ \begin{cases}
L&=2.50\ut{m}\\
mg&=500\ut{N}\\
d&=1.50\ut{m}\\
\end{cases} $$
$$ x=\sqrt{L^2-d^2},$$
$$\ab{a}$$
$$ \begin{aligned}
\Sigma \tau&=0\\
&=-\frac{x}{2}mg+LP\\
\end{aligned} $$
$$ \begin{aligned}
P&=\frac{mgx}{2L}\\
&=\frac{mg}{2L}\sqrt{L^2-d^2}\\
&=200\ut{N}\\
\end{aligned} $$
$$\ab{b}$$
$$\put x=\sqrt{L^2-d^2}$$
$$\sin\theta=\frac{d}{L},$$
$$ \begin{aligned}
\vec P &=-P\sin\theta\i+P\cos\theta\j\\
&=-\frac{dP}{L}\i+\frac{xP}{L}j\taag1\\
\end{aligned} $$
$$ \begin{aligned}
\Sigma \vec F&=0\\
&=m\vec g+\vec P+\vec N\\
\end{aligned} $$
$$ \begin{aligned}
N&=\abs{\vec N}\\
&=\abs{-m\vec g-\vec P}\\
&=\abs{-m\br{-g\j}-\br{-\frac{dP}{L}\i+\frac{xP}{L}j}}\\
&=\abs{\frac{dP}{L}\i+\br{mg-\frac{xP}{L}}\j}\\
&=\sqrt{\br{\frac{dP}{L}}^2+\br{mg-\frac{xP}{L}}^2}\\
&=100\sqrt{13}\ut{N}\\
&\approx 360.5551275463989\ut{N}\\
&\approx 361\ut{N}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
f&=\mu N\\
N_x&=\mu N_y\\
\end{aligned} $$
$$ \begin{aligned}
\mu&= \frac{N_x}{N_y}\\
&= \frac{\frac{dP}{L}}{mg-\frac{xP}{L}}\\
&=\frac{d P}{L mg-xP}\\
&=\frac{6}{17}\\
&\approx 0.35294117647058826\\
&\approx 0.353\\
\end{aligned} $$
'11판 > 12. 평형과 탄성' 카테고리의 다른 글
| 12-46 할리데이 11판 솔루션 일반물리학 (0) | 2025.05.01 |
|---|---|
| 12-45 할리데이 11판 솔루션 일반물리학 (0) | 2025.05.01 |
| 12-43 할리데이 11판 솔루션 일반물리학 (0) | 2025.04.30 |
| 12-42 할리데이 11판 솔루션 일반물리학 (0) | 2025.04.30 |
| 12-41 할리데이 11판 솔루션 일반물리학 (0) | 2025.04.30 |