$$ \begin{cases} m&=120\ut{g}=0.12\ut{kg}\\
I&=950\ut{g\cdot cm^2}=9.5\times10^{-5}\ut{kg\cdot m^2}\\
r&=3.2\ut{mm}=3.2\times10^{-3}\ut{m}\\
y&=120\ut{cm}=1.2\ut{m}\\
v_0&=1.3\ut{m/s}\\
\end{cases} $$
$$ \put \begin{cases} \RE : \text{Rotational Kinetic Energy}\\
\KE : \text{Translational Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\end{cases} $$
$$ \begin{cases} \Sigma F&=ma\\
\Sigma \tau &= I\alpha\\
a&=r\alpha\\
\end{cases} $$
$$ \begin{cases} T-mg&=m(-a)\\
rT&=I\alpha\\
a&=r\alpha\\
\end{cases} $$
$$ \therefore a=\frac{ m g r^2}{I+m r^2} $$
$$\ab{a}$$
$$S=v_0t+\frac{1}{2}at^2,$$
$$ \begin{aligned} t&=\frac{\sqrt{2 a y+{v_0}^2}-v_0}{a}\\
&\approx 0.8853258140080581\ut{s}\\
&\approx 0.89\ut{s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \omega_0=\frac{v_0}{r},$$
$$\Sigma \Delta E=0,$$
$$\Delta \GE+\Delta \KE+\Delta \RE=0$$
$$\Delta \GE+(\KE_f-\KE_i)+(\RE_f-\RE_i)=0$$
$$ \begin{aligned} \KE_f+\RE_f &=\KE_i+\RE_i-\Delta \GE\\
&=\frac{1}{2}m{v_0}^2+\frac{1}{2}I{\omega_0}^2-mgy\\
&=\frac{1}{2}m{v_0}^2+\frac{1}{2}I\(\frac{v_0}{r}\)^2-mgy\\
&=\frac{18 g}{125}+\frac{10164167}{1280000}\\
&\approx 9.35291306875\ut{J}\\
&\approx 9.4\ut{J}\\
\end{aligned} $$
$$\ab{c}$$
$$2aS=v^2-{v_0}^2,$$
$$ \begin{aligned} v&=\sqrt{2ay+{v_0}^2}\\
&=\sqrt{\frac{2 g m r^2}{I+m r^2}+{v_0}^2}\\
&=\sqrt{\frac{9216 g}{300715}+\frac{169}{100}}\\
&\approx 1.4108663974618418\ut{m/s}\\
&\approx 1.4\ut{m/s}\\
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned} \KE&=\frac{1}{2}mv^2\\
&=\frac{1}{2}m(2a+{v_0}^2)\\
&=\frac{1}{2} m \left(\frac{2 m gr^2}{I+m r^2}+{v_0}^2\right)\\
&=\frac{13824 g}{7517875}+\frac{507}{5000}\\
&\approx 0.11943263948921737\ut{J}\\
&\approx 0.12\ut{J}\\
\end{aligned} $$
$$\ab{e}$$
$$ \begin{aligned} \omega&=\frac{v}{r}\\
&=\frac{\sqrt{2a+{v_0}^2}}{r}\\
&=\frac{1}{r}\sqrt{\frac{2 mg y r^2}{I+m r^2}+{v_0}^2}\\
&=\frac{625}{2} \sqrt{\frac{9216 g}{300715}+\frac{169}{100}}\\
&\approx 4.408957492068256\times10^2\ut{rad/s}\\
&\approx 4.4\times10^2\ut{rad/s}\\
\end{aligned} $$
$$\ab{f}$$
$$ \begin{aligned} \RE &=\frac{1}{2}I\omega^2\\
&=\frac{I v^2}{2 r^2}\\
&=\frac{I \left(2 a y+{v_0}^2\right)}{2 r^2}\\
&=\frac{mg y I}{I+m r^2}+\frac{I {v_0}^2}{2 r^2}\\
&=\frac{8550 g}{60143}+\frac{16055}{2048}\\
&\approx 9.233480429260783\ut{J}\\
&\approx 9.2\ut{J}\\
\end{aligned} $$
'11판 > 11. 굴림운동, 토크, 각운동량' 카테고리의 다른 글
11-6 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.15 |
---|---|
11-5 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.15 |
11-4 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.15 |
11-2 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.15 |
11-1 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.14 |