$$ \put \begin{cases}
a:m_a\\
b:m_b
\end{cases} $$
$$ \begin{cases}
v_{ai}&=0.75\ut{m/s}\\
m_a&=0.25\ut{kg}\\
m_b&=0.50\ut{kg}\\
L_a&=5.0\ut{cm}=5\times10^{-2}\ut{m}\\
L_b&=6.0\ut{cm}=6\times10^{-2}\ut{m}\\
x_{ai}&=-1.50\ut{m}\\
x_{bi}&=0\ut{m}\\
\end{cases} $$
$$\put M=m_a+m_b=0.75\ut{kg}$$
$$\vec r_{\com} = \frac{\Sigma m\vec r}{M},$$
$$ \begin{aligned}
x_\com&=\frac{\Sigma mx}{M}\\
&=\frac{m_ax_a+m_bx_b}{M}
\end{aligned} $$
$$\ab{a}$$
$$t=0,$$
$$ \begin{cases}
x_a&=-1.5\ut{m}\\
x_b&=0\\
\end{cases} $$
$$ \begin{aligned}
x_\com&=\frac{m_ax_a+m_bx_b}{M}\\
&=\frac{m_a}{M}x_a\\
&=-\frac{1}{2}\ut{m}\\
&=-0.50\ut{m}\\
&=-50\ut{cm}\\
\end{aligned} $$
$$\ab{b}$$
$$t=\text{Contact},$$
$$ \begin{cases}
x_a&=-\frac{L_b}{2}-\frac{L_a}{2}=-5.5\ut{cm}\\
x_b&=0\\
\end{cases} $$
$$ \begin{aligned}
x_\com&=\frac{m_ax_a+m_bx_b}{M}\\
&=\frac{m_a}{M}x_a\\
&=-\frac{11}{6}\ut{cm}\\
&\approx -1.8333333333333333\ut{cm}\\
&\approx -1.8\ut{cm}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
v_\com&=\dyt{x_\com}\\
&=\dt\frac{m_ax_a+m_bx_b}{M}\\
&=\frac{m_a\dyt{x_a}+m_b\dyt{x_b}}{M}\\
&=\frac{m_av_{ai}+m_bv_{bi}}{M}\\
&=\frac{m_a}{M}v_{ai}\\
\end{aligned} $$
$$ \begin{aligned}
x_\com(t)&=x_\com(0)+v_\com t\\
&=\frac{m_a}{M}x_{ai}+\frac{m_a}{M}v_{ai}t\\
&=\frac{m_a}{M}(x_{ai}+v_{ai}t)\\
&=\frac{1}{4}(t-2)\\
\end{aligned} $$
$$ \begin{aligned}
x_\com(4)&=\frac{1}{2}\ut{m}\\
&=0.50\ut{m}\\
\end{aligned} $$
'11판 > 9. 질량중심과 선운동량' 카테고리의 다른 글
9-17 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.16 |
---|---|
9-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.16 |
9-14 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.16 |
9-13 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.15 |
9-12 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.15 |