11판/9. 질량중심과 선운동량

9-1 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 4. 13. 04:01

put {A:m1B:m2C:m3 \put \begin{cases} A:m_1\\ B:m_2\\ C:m_3\\ \end{cases} put {0:Start1:After A,B Crash2:After B,C Crash \put \begin{cases} 0:\text{Start}\\ 1:\text{After A,B Crash}\\ 2:\text{After B,C Crash}\\ \end{cases} {mA=mmB=2.00mmC=2.00mB=4.00m \begin{cases} m_A&=m\\ m_B&=2.00m\\ m_C&=2.00m_B=4.00m \end{cases} {vA0=2.00[m/s]vB0=0vC0=0 \begin{cases} v_{A0}&=2.00\ut{m/s}\\ v_{B0}&=0\\ v_{C0}&=0\\ \end{cases} ΔΣP=0,\Delta \Sigma \vec P=0, Elastic Collisionvin+vout=0, \text{Elastic Collision}\Harr\vec v_{\text{in}}+ \vec v_{\text{out}}=0, vAivBi+vAfvBf=0,\vec v_{Ai}-\vec v_{Bi}+ \vec v_{Af}-\vec v_{Bf}=0, {PAi+PBi=PAf+PBfvAi+vAf=vBi+vBf \begin{cases} \vec P_{Ai}+\vec P_{Bi}&=\vec P_{Af}+\vec P_{Bf}\\ \vec v_{Ai}+\vec v_{Af}&=\vec v_{Bi}+\vec v_{Bf}\\ \end{cases} {PAi=PAf+PBfvAi+vAf=vBf \begin{cases} \vec P_{Ai}&=\vec P_{Af}+\vec P_{Bf}\\ \vec v_{Ai}+\vec v_{Af}&=\vec v_{Bf}\\ \end{cases} {mAvAi=mAvAf+mBvBfvAi+vAf=vBf \begin{cases} m_A\vec v_{Ai}&=m_A\vec v_{Af}+m_B\vec v_{Bf}\\ \vec v_{Ai}+\vec v_{Af}&=\vec v_{Bf}\\ \end{cases} {vAf=mAmBmA+mBvAivBf=2mAmA+mBvAi \therefore \begin{cases} \vec v_{Af}&=\cfrac{m_A-m_B}{m_A+m_B}\vec v_{Ai}\\ \vec v_{Bf}&=\cfrac{2m_A}{m_A+m_B}\vec v_{Ai}\\ \end{cases} (a)\ab{a} vB1=2mAmA+mBvA0=2mm+2mvA0=23vA0 \begin{aligned} \vec v_{B1}&=\frac{2m_A}{m_A+m_B}\vec v_{A0}\\ &=\frac{2m}{m+2m}\vec v_{A0}\\ &=\frac{2}{3}\vec v_{A0} \end{aligned} vC2=2mBmB+mCvB1=22m2m+4m(23vA0)=49vA0=89[m/s]0.8888888888888888[m/s]0.889[m/s]88.9[cm/s] \begin{aligned} \vec v_{C2}&=\frac{2m_B}{m_B+m_C}\vec v_{B1}\\ &=\frac{2\cdot 2m}{2m+4m}\cdot\(\frac{2}{3}\vec v_{A0}\)\\ &=\frac{4}{9}\vec v_{A0}\\ &=\frac{8}{9}\ut{m/s}\\ &\approx 0.8888888888888888\ut{m/s}\\ &\approx 0.889\ut{m/s}\\ &\approx 88.9\ut{cm/s}\\ \end{aligned} (b1)\ab{b-1} vC2<vA0  (vC2=49vA0)v_{C2} \lt v_{A0}~~\(\because v_{C2}=\frac{4}{9}\vec v_{A0}\) (b2)\ab{b-2} KEC2=12mCvC22=12(4m)(49vA0)2=6481(12mvA02)=6481KEA0 \begin{aligned} \KE_{C2}&=\frac{1}{2}m_C{v_{C2}}^2\\ &=\frac{1}{2}(4m)\(\frac{4}{9}\vec v_{A0}\)^2\\ &=\frac{64}{81}\(\frac{1}{2}m{v_{A0}}^2\)\\ &=\frac{64}{81}\KE_{A0} \end{aligned} KEC2<KEA0\therefore \KE_{C2} \lt \KE_{A0} (b3)\ab{b-3} PC2=mCvC2=(4m)(49vA0)=89(mvA0)=89PA0 \begin{aligned} \vec P_{C2}&=m_Cv_{C2}\\ &=(4m)\(\frac{4}{9}\vec v_{A0}\)\\ &=\frac{8}{9}\(m\vec v_{A0}\)\\ &=\frac{8}{9}\vec P_{A0}\\ \end{aligned} PC2<PA0\therefore \vec P_{C2} \lt \vec P_{A0}