$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\LE : \text{Elastic Potential Energy}\\
\end{cases} $$
$$ \begin{cases}
k&=620\ut{N/m}\\
x_i&=25\ut{cm}=0.25\ut{m}\\
mg&=50\ut{N}\\
v_i&=0\\
\GE(0)&=0\\
\end{cases} $$
$$ \begin{aligned}
\Delta x &= -\Delta h\\
x_f-x_i&=h_i-h_f\\
x_f&=x_i-h_f\\
\end{aligned} $$
$$\Sigma \Delta E=0,$$
$$\Delta \KE+\Delta \GE+\Delta \LE=0$$
$$ \begin{aligned}
\KE_f&=\KE_i-\Delta \GE-\frac{1}{2}k\Delta \(x^2\)\\
&=\KE_i-(\GE_f-\GE_i)-\frac{1}{2}k\Delta \(x^2\)\\
&=0-(\GE_f-0)-\frac{1}{2}k\({x_f}^2-{x_i}^2\)\\
&=-mgh_f-\frac{1}{2}k\bra{{\({x_i}-h_f\)}^2-{{x_i}}^2}\\
&=-\frac{1}{2} h_f (2 mg+kh_f -2 k x_i)\\
&=5 h_f (21-62 h_f)
\end{aligned} $$
$$\therefore \KE(h)=5 h (21-62 h)$$
$$\ab{a}$$
$$ \KE(0)=0$$
$$\ab{b}$$
$$ \begin{aligned}
\KE(0.050\ut{m})&=\frac{179}{40}\ut{J}\\
&=4.475\ut{J}\\
&\approx 4.5\ut{J}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\KE(0.10\ut{m})&=\frac{37}{5}\ut{J}\\
&=7.4\ut{J}\\
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
\KE(0.15\ut{m})&=\frac{351}{40}\ut{J}\\
&=8.775\ut{J}\\
&\approx 8.8\ut{J}\\
\end{aligned} $$
$$\ab{e}$$
$$ \begin{aligned}
\KE(0.2\ut{m})&=\frac{43}{5}\ut{J}\\
&=8.6\ut{J}\\
\end{aligned} $$
$$\ab{f}$$
$$\Sigma \Delta E=0,$$
$$\Delta \KE+\Delta \GE+\Delta \LE=0$$
$$ \begin{aligned}
\Delta \GE&=-\Delta \LE\\
\GE_f-\GE_i&=\LE_i-\LE_f\\
\GE_f&=\LE_i\\
mgh&=\frac{1}{2}k{x_i}^2\\
\end{aligned} $$
$$ \begin{aligned}
h&=\frac{k{x_i}^2}{2mg}\\
&=\frac{31}{80}\ut{m}\\
&= 0.3875\ut{m}\\
&\approx 0.39\ut{m}\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-56 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
---|---|
8-55 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
8-53 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.08 |
8-52 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.05 |
8-51 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.05 |