$$ \begin{cases}
mg&=560\ut{N}\\
R&=20\ut{m}\\
v_B&=7.0\ut{m/s}\\
\theta&=20\degree\\
g&=9.80665\ut{m/s^2}\\
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\end{cases} $$
$$ \begin{aligned}
\Delta h &= R-R\cos\theta\\
&=R(1-\cos\theta)
\end{aligned} $$
$$\ab{a}$$
$$\Sigma \Delta E=0,$$
$$\Delta \KE+\Delta \GE=0$$
$$ \begin{aligned}
\Delta \KE&=-\Delta \GE\\
\Delta \(\frac{1}{2}mv^2\)&=-\Delta (mgh)\\
\Delta \(v^2\)&=-2g\Delta h\\
{v_A}^2-{v_B}^2&=-2gR(1-\cos\theta)\\
\end{aligned} $$
$$ \begin{aligned}
v_A&=\sqrt{{v_B}^2-2gR(1-\cos\theta)}\\
&\approx 5.034229393383376\ut{m/s}\\
&\approx 5.0\ut{m/s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
v_A&=\sqrt{{v_B}^2-2gR(1-\cos\theta)}\ge0\\
0&=\sqrt{{v_B}^2-2gR(1-\cos\theta)}\\
\end{aligned} $$
$$ \begin{aligned}
v_B&=\sqrt{2 g R (1-\cos \theta)}\\
&=4\sqrt{5g}\sin10\degree\\
&\approx 4.863798352604151\ut{m/s}\\
&\approx 4.9\ut{m/s}\\
\end{aligned} $$
$$\ab{c}$$
$$v_A=\sqrt{{v_B}^2-2gR(1-\cos\theta)},$$
$$\text{Constant about }mg$$
$$v_B=\sqrt{2 g R (1-\cos \theta)},$$
$$\text{Constant about }mg$$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-54 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.09 |
---|---|
8-53 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.08 |
8-51 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.05 |
8-50 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.05 |
8-49 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.04 |