$$ \begin{cases}
mg&=45.0\ut{N}\\
\theta&=15.0\degree\\
\mu_s&=0.500\\
\mu_k&=0.340\\
g&=9.80665\ut{m/s^2}
\end{cases} $$
$$ \begin{aligned}
F_N&=mg\cos\theta\\
&=\frac{45 \(1+\sqrt{3}\)}{2\sqrt{2}}\ut{N}\\
\end{aligned} $$
$$ \begin{aligned}
f_{s\max}&=\mu_s F_N\\
&=\frac{45\(1+\sqrt{3}\)}{4\sqrt{2}}\ut{N}\\
&\approx 21.733331091504034\ut{N}\\
\end{aligned} $$
$$ \begin{aligned}
f_k&=\mu_k F_N\\
&=\frac{153\(1+\sqrt{3}\)}{20\sqrt{2}}\ut{N}\\
&\approx 14.778665142222744\ut{N}\\
&\approx 14.8\ut{N}\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
\Sigma F&=mg\sin\theta+P_a\\
&=\frac{45\(\sqrt{3}-1\)}{2\sqrt{2}}+3\ut{N}\\
&\approx 14.646857029613432\ut{N}\\
&\approx 14.6\ut{N}
\end{aligned} $$
$$\Sigma F\lt f_{s\max},$$
$$ \begin{aligned}
f&=\Sigma F\\
&\approx 14.6\ut{N}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\Sigma F&=mg\sin\theta+P_b\\
&=\frac{45\(\sqrt{3}-1\)}{2\sqrt{2}}+9\ut{N}\\
&\approx 20.6468570296134322\ut{N}\\
&\approx 20.6\ut{N}
\end{aligned} $$
$$\Sigma F\lt f_{s\max},$$
$$ \begin{aligned}
f&=\Sigma F\\
&\approx 20.6\ut{N}
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\Sigma F&=mg\sin\theta+P_c\\
&=\frac{45\(\sqrt{3}-1\)}{2\sqrt{2}}+13\ut{N}\\
&\approx 24.646857029613432\ut{N}\\
\end{aligned} $$
$$\Sigma F\gt f_{s\max},$$
$$ \begin{aligned}
f&=f_k\\
&\approx 14.8\ut{N}\\
\end{aligned} $$
'11판 > 6. 힘과 운동 II' 카테고리의 다른 글
6-52 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.07 |
---|---|
6-51 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.07 |
6-49 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.07 |
6-48 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.06 |
6-47 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.06 |