$$ \begin{cases}
R&=20.0\ut{cm}=0.2\ut{m}\\
T&=5.00\ut{ms}=5\times10^{-3}\ut{s}\\
h&=1.20\ut{m}\\
d&=3.50\ut{m}\\
g&=9.80665\ut{m/s^2}
\end{cases} $$
$$[\text{get }\theta_0]$$
$$ \begin{aligned}
\theta_{5\text{o'clock}\larr x+}&= -\frac{2}{12}\cdot2\pi\ut{rad}\\
&=-\frac{\pi}{3}\ut{rad}\\
\end{aligned} $$
$$\theta_{5\text{o'clock}\larr x+}\perp\theta_0,$$
$$ \begin{aligned}
\theta_0&=-\frac{\pi}{3}+\frac{\pi}{2}\\
&=\frac{\pi}{6}\ut{rad}\\
\end{aligned} $$
$$[\text{get }v_0 ]$$
$$ \begin{aligned}
v_0&=R\omega\\
&=R\cdot\frac{2\pi}{T}\\
&=(0.2)\cdot \frac{2\pi}{5\times10^{-3}}\\
&=80\pi\ut{m/s}
\end{aligned} $$
$$[\text{get }\vec v_0 ]$$
$$ \begin{aligned}
\vec v_0 &= 80\pi\cos\frac{\pi}{6}\i+80\pi\sin\frac{\pi}{6}\j\\
&=\(40\pi\sqrt3\i+40\pi\j\)\ut{m/s}
\end{aligned} $$
$$[\text{get }t ]$$
$$ \begin{aligned}
t&=\frac{\Delta x}{v_x}\\
&=\frac{3.5}{40\pi\sqrt3}\ut{s}\\
&=\frac{7}{80 \sqrt{3} \pi }\ut{s}\\
\end{aligned} $$
$$[\text{get }\Delta y ]$$
$$S=v_0t+\frac{1}{2}at^2,$$
$$ \begin{aligned}
\Delta y&=v_{y0}t+\frac{1}{2}(-g)t^2\\
&=(40\pi)\(\frac{7}{80\sqrt{3}\pi}\)-\frac{1}{2}g\(\frac{7}{80\sqrt{3}\pi}\)^2\\
&=\(\frac{7}{2 \sqrt{3}}-\frac{49 g}{38400 \pi ^2}\)\ut{m}\\
\end{aligned} $$
$$[\text{get }\Ans ]$$
$$ \begin{aligned}
\Ans &= h+\Delta y\\
&=1.20+\(\frac{7}{2 \sqrt{3}}-\frac{49 g}{38400 \pi ^2}\)\\
&\approx 3.219458039874817\ut{m}\\
&\approx 3.22\ut{m}\\
\end{aligned} $$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-18 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.31 |
---|---|
4-17 할리데이 11판 솔루션 일반물리학 (1) | 2024.01.30 |
4-15 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.30 |
4-14 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.29 |
4-13 할리데이 11판 솔루션 일반물리학 (2) | 2024.01.29 |