$$ \begin{cases}
v_0&=22\ut{m/s},\theta_0=60\degree\\
t_1&=1.2\ut{s}\\
\end{cases} $$
$$\ab{a,b,c}$$
$$v=v_0+at,$$
$$ \begin{aligned}
v_{y1}&=22\sin60\degree+(-g)(1.2)\\
&=11\sqrt{3}-\frac{6}{5}g\\
\end{aligned} $$
$$ \begin{aligned}
\vec v_1&=20\cos60\degree\i+\(11\sqrt{3}-\frac{6}{5}g\)\j\\
&=10\i+\(11\sqrt{3}-\frac{6}{5}g\)\j\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
v_1 &= \sqrt{10^2+\(11\sqrt{3}-\frac{6}{5}g\)^2}\\
&\approx 12.37194768443527\ut{m/s}\\
&\approx 12\ut{m/s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\theta_1&=\tan^{-1}\frac{11\sqrt{3}-\frac{6}{5}g}{10}\\
&\approx 0.6295710089002262\ut{rad}\\
&\approx 0.63\ut{rad}
\end{aligned} $$
$$\ab{c}$$
$$\theta_1>0,$$
$$\title{Up}$$
$$\ab{d,e,f}$$
$$v=v_0+at,$$
$$ \begin{aligned}
v_{y3}&=22\sin60\degree+(-g)(3)\\
&=11\sqrt{3}-3g\\
\end{aligned} $$
$$ \begin{aligned}
\vec v_3&=20\cos60\degree\i+\(11\sqrt{3}-3g\)\j\\
&=10\i+\(11\sqrt{3}-3g\)\j\\
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
v_1 &= \sqrt{10^2+\(11\sqrt{3}-3g\)^2}\\
&\approx 14.40426320807518\ut{m/s}\\
&\approx 14\ut{m/s}\\
\end{aligned} $$
$$\ab{e}$$
$$ \begin{aligned}
\theta_1&=\tan^{-1}\frac{11\sqrt{3}-3g}{10}\\
&\approx -0.8034344094524052\ut{rad}\\
&\approx -0.80\ut{rad}
\end{aligned} $$
$$\ab{f}$$
$$\theta_3<0,$$
$$\title{Down}$$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-19 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.31 |
---|---|
4-18 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.31 |
4-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.30 |
4-15 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.30 |
4-14 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.29 |