$$ \begin{cases}
t_1&=3.2\ut{s}\\
t_2&=t_1+2.9\ut{s}\\
x_2&=86.0\ut{m}\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
S&=vt-\frac{1}{2}at^2,\\
\Delta y_{0\rarr1}&=(0)t-\frac{1}{2}(-g)(3.2)^2\\
&=\frac{128}{25}g\\
&=\frac{784532}{15625}\ut{m}\\
&= 50.210048\ut{m}\\
&\approx 50\ut{m}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
S&=v_0t+\frac{1}{2}at^2,\\
\Delta y_{1\rarr2} &=(0)t+\frac{1}{2}(-g)(2.9)^2\\
&=-\frac{841}{200}g\\
\end{aligned} $$
$$ \begin{aligned}
\Sigma y &= \Delta y_{0\rarr1}+\Delta y_{1\rarr2}\\
&=\frac{128}{25}g-\frac{841}{200}g\\
&=\frac{183}{200}g\\
&= \frac{35892339}{4000000}\ut{m}\\
&=8.97308475\ut{m}\\
&\approx 9.0\ut{m}
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
v_x &=\frac{\Delta x_{0\rarr2}}{t_{0\rarr2}}\\
&=\frac{85}{3.2+2.9}\ut{m/s}\\
&=\frac{850}{61}\ut{m/s}\\
\end{aligned} $$
$$ \begin{cases}
\Delta x_{0\rarr3} &= v_xt_{0\rarr3}\\
\Delta x_{0\rarr2} &= v_xt_{0\rarr2}\\
\end{cases} $$
$$\frac{\Delta x_{0\rarr3}}{\Delta x_{0\rarr2}}= \frac{t_{0\rarr3}}{t_{0\rarr2}}$$
$$ \begin{aligned}
\Delta x_{0\rarr3}&=\frac{2\cdot3.2}{3.2+2.9}\cdot 86\ut{m}\\
&=\frac{5504}{61}\ut{m}\\
\end{aligned} $$
$$ \begin{aligned}
\Delta x_{2\rarr3}&=\Delta x_{0\rarr3}-\Delta x_{0\rarr2}\\
&=\(\frac{5504}{61}-86\)\ut{m}\\
&=\frac{258}{61}\ut{m}\\
&\approx 4.229508196721311\ut{m}\\
&\approx 4.2\ut{m}\\
\end{aligned} $$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.30 |
---|---|
4-15 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.30 |
4-13 할리데이 11판 솔루션 일반물리학 (2) | 2024.01.29 |
4-12 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.29 |
4-11 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.29 |