$$ \begin{cases}
\vec r_A&=0 &\\
t_{A\rarr B}&=45.0\ut{min},&\vec r_B=500\i\ut{km}\\
t_{B\rarr C}&=1.50\ut{h},&\vec r_C=-1100\j\ut{km}\\
\end{cases} $$
$$\Sigma \vec r = \(500\i-1100\j\)\ut{km}$$
$$\ab{a}$$
$$ \begin{aligned}
r&= \sqrt{500^2+1100^2}\\
&=100\sqrt{146}\ut{km}\\
&\approx 1208.304597359457\ut{km}\\
&\approx 1.21\times10^3\ut{km}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\theta_r &= \tan^{-1}\(\frac{-1100}{500}\)\\
&\approx -1.144168833668021\ut{rad}\\
&\approx -1.14\ut{rad}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\vec v&=\frac{(500\i-1100\j)\ut{km}}{45\ut{min}+1.5\ut{h}}\\
&=\(\frac{2000}{9}\i-\frac{4400}{9}\j\)\ut{km/h}\\
v&=\sqrt{\(\frac{2000}{9}\)^2+\(\frac{4400}{9}\)^2}\\
&=\frac{400 \sqrt{146}}{9}\ut{km/h}\\
&\approx 537.0242654930921\ut{km/h}\\
&\approx 537\ut{km/h}\\
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
\theta_{\vec v}&=\theta_r\\
&= \tan^{-1}\(\frac{-1100}{500}\)\\
&\approx -1.144168833668021\ut{rad}\\
&\approx -1.14\ut{rad}\\
\end{aligned} $$
$$\ab{e}$$
$$ \begin{aligned}
v_L&=\frac{\Sigma L}{\Sigma t}\\
&=\frac{(500+1100)\ut{km}}{45\ut{min}+1.5\ut{h}}\\
&=\frac{6400}{9}\ut{km/h}\\
&\approx 711.1111111111111\ut{km/h}\\
&\approx 711\ut{km/h}\\
\end{aligned} $$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-14 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.29 |
---|---|
4-13 할리데이 11판 솔루션 일반물리학 (2) | 2024.01.29 |
4-11 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.29 |
4-10 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.29 |
4-9 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.27 |