$$ \begin{cases}
\Delta \vec r_{0\rarr1}&=(5.70\ut{m})\j\\
\Delta r_{1\rarr2}&=3.40\ut{m}\\
\theta_{1\rarr2}&=-\cfrac{\pi}{4}\ut{rad}\\
\Delta r_{2\rarr3}&=0.91\ut{m}\\
\theta_{2\rarr3}&=-\cfrac{3\pi}{4}\ut{rad}\\
\end{cases} $$
$$ \begin{aligned}
\Delta \vec r_{1\rarr2}&=r_{1\rarr2}\cos\theta_{1\rarr2}\i+r_{1\rarr2}\sin\theta_{1\rarr2}\\
&=3.40\cos\(-\cfrac{\pi}{4}\)\i+3.40\sin\(-\cfrac{\pi}{4}\)\j\\
&=\frac{17}{5 \sqrt{2}}\i-\frac{17}{5 \sqrt{2}}\j\\
\end{aligned} $$
$$ \begin{aligned}
\Delta \vec r_{2\rarr3}&=r_{2\rarr3}\cos\theta_{2\rarr3}\i+r_{2\rarr3}\sin\theta_{2\rarr3}\\
&=0.91\cos\(-\cfrac{3\pi}{4}\)\i+0.91\sin\(-\cfrac{3\pi}{4}\)\j\\
&=-\frac{91}{100 \sqrt{2}}\i-\frac{91}{100 \sqrt{2}}\j\\
\end{aligned} $$
$$ \begin{aligned}
\Sigma \Delta \vec r&=\Delta \vec r_{0\rarr1}+\Delta \vec r_{1\rarr2}+\Delta \vec r_{2\rarr3}\\
&=\(5.7\j\)+\(\frac{17}{5 \sqrt{2}}\i-\frac{17}{5 \sqrt{2}}\j\)+\(-\frac{91}{100 \sqrt{2}}\i-\frac{91}{100 \sqrt{2}}\j\)\\
&=\frac{249}{100 \sqrt{2}}\i+\frac{1}{200} \left(1140-431 \sqrt{2}\right)\j\\
\end{aligned} $$
$$ \begin{cases}
\Sigma \Delta r&=\cfrac{1}{100} \sqrt{448781-245670 \sqrt{2}}\ut{m}\\
\theta&=\tan ^{-1}\bra{\cfrac{1}{249}\left(570 \sqrt{2}-431\right)}
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
\Sigma \Delta r&=\cfrac{1}{100} \sqrt{448781-245670 \sqrt{2}}\ut{m}\\
&\approx 3.183569602377208\ut{m}\\
&\approx 3.18\ut{m}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\theta&=\tan ^{-1}\bra{\cfrac{1}{249}\left(570 \sqrt{2}-431\right)}\\
&\approx 0.9847671395607246\ut{rad}\\
&\approx 0.985\ut{rad}
\end{aligned} $$
'11판 > 3. 벡터' 카테고리의 다른 글
3-6 할리데이 11판 솔루션 일반물리학 (2) | 2024.01.20 |
---|---|
3-5 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.20 |
3-3 할리데이 11판 솔루션 일반물리학 (3) | 2024.01.19 |
3-2 할리데이 11판 솔루션 일반물리학 (2) | 2024.01.19 |
3-1 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.19 |