11판/3. 벡터

3-1 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 19. 19:24
{i^:Eastj^:Northk^:Up \begin{cases} \i&:\text{East}\\ \j&:\text{North}\\ \k&:\text{Up}\\ \end{cases} (a)\ab{a} i^k^=(1i^+0j^+0k^)(0i^+0j^+1k^)=10+00+01=0 \begin{aligned} \i\cdot\k&=\(1\i+0\j+0\k\)\cdot\(0\i+0\j+1\k\)\\ &=1\cdot0+0\cdot0+0\cdot1\\ &=0 \end{aligned} (b)\ab{b} (k^)(j^)={0i^+0j^+(1)k^}{0i^+(1)j^+0k^}=00+0(1)+(1)0=0 \begin{aligned} \(-\k\)\cdot\(-\j\)&=\bra{0\i+0\j+(-1)\k}\cdot\bra{0\i+(-1)\j+0\k}\\ &=0\cdot0+0\cdot(-1)+(-1)\cdot0\\ &=0 \end{aligned} (c)\ab{c} j^(j^)=(0i^+1j^+0k^){0i^+(1)j^+0k^}=00+1(1)+00=1 \begin{aligned} \j\cdot\(-\j\)&=\(0\i+1\j+0\k\)\cdot\bra{0\i+(-1)\j+0\k}\\ &=0\cdot0+1\cdot(-1)+0\cdot0\\ &=-1 \end{aligned} (d)\ab{d} {i^×j^=k^j^×k^=i^k^×i^=j^ \begin{cases} \i\times\j&=\k\\ \j\times\k&=\i\\ \k\times\i&=\j\\ \end{cases} k^×j^=(j^×k^)=i^ \begin{aligned} \k\times\j&=-\(\j\times\k\)\\ &=-\i \end{aligned} West\text{West} (e)\ab{e} (i^)×(j^)=i^×j^=k^ \begin{aligned} \(-\i\)\times\(-\j\)&=\i\times\j\\ &=\k \end{aligned} Up\text{Up} (f)\ab{f} (k^)×(j^)=k^×j^=(j^×k^)=i^ \begin{aligned} \(-\k\)\times\(-\j\)&=\k\times\j\\ &=-\(\j\times\k\)\\ &=-\i \end{aligned} West\text{West}