11판/2. 직선운동

2-18 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 11. 20:42

{A : in AirB : in Water \begin{cases} \text{A : in Air}\\ \text{B : in Water}\\ \end{cases} {HA=7.00[m]tB=4.00[s]g=9.80665[m/s2] \begin{cases} H_A&=7.00\ut{m}\\ t_B&=4.00\ut{s}\\ g&=9.80665\ut{m/s^2} \end{cases} (a)\ab{a} 2aS=v2v02,2(g)(H)=v2(0)2 \begin{aligned} 2aS&=v^2-v_0^2,\\ 2(-g)(-H)&=v^2-(0)^2 \end{aligned} vB=2gH=14g \begin{aligned} v_B&=\sqrt{2gH}\\ &=\sqrt{14g} \end{aligned} HB=vBt=(14g)(4[s])=72528019[m]46.8688553305924[m]46.9[m] \begin{aligned} H_B&=v_B\cdot t\\ &=\(\sqrt{14g}\)\cdot (4\ut{s})\\ &=\frac{7}{25}\sqrt{28019}\ut{m}\\ &\approx46.8688553305924\ut{m}\\ &\approx46.9\ut{m}\\ \end{aligned} (b)\ab{b} Ans=vˉ=ΣSΣt, \Ans = \bar v = \frac{\Sigma S}{\Sigma t}, S=v0t+12at2,S=v_0t+\frac{1}{2}at^2, H=(0)t+12(g)t2H=12gt2 \begin{aligned} -H&=(0)t+\frac{1}{2}(-g)t^2\\ H&=\frac{1}{2}gt^2 \end{aligned} tA=2Hg=2(7.00[m])g=20028019[s] \begin{aligned} t_A&=\sqrt{\frac{2H}{g}}\\ &=\sqrt{\frac{2(7.00\ut{m})}{g}}\\ &=\frac{200}{\sqrt{28019}}\ut{s} \end{aligned} ΣS=HA+HB=7.00[m]+72528019[m]Σt=tA+tB=20028019[s]+4.00[s]vˉ=ΣSΣt=7.00[m]+72528019[m]20028019[s]+4.00[s]=72551900(2676928019700475)[m/s]10.3697185268293[m/s]10.4[m/s] \begin{aligned} \Sigma S&=H_A+H_B\\ &=7.00\ut{m}+\frac{7}{25}\sqrt{28019}\ut{m}\\ \Sigma t&=t_A+t_B\\ &=\frac{200}{\sqrt{28019}}\ut{s}+4.00\ut{s}\\ \bar v &= \frac{\Sigma S}{\Sigma t}\\ &=\frac{7.00\ut{m}+\frac{7}{25}\sqrt{28019}\ut{m}}{\frac{200}{\sqrt{28019}}\ut{s}+4.00\ut{s}}\\ &=\frac{7 }{2551900}\left(26769 \sqrt{28019}-700475\right)\ut{m/s}\\ &\approx10.3697185268293\ut{m/s}\\ &\approx10.4\ut{m/s}\\ \end{aligned} (c)\ab{c} [Down]\title{Down} (d)\ab{d} {H=7.00[m]+72528019t=4.00[s]g=9.80665[m/s2] \begin{cases} H&=7.00\ut{m}+\frac{7}{25}\sqrt{28019}\\ t&=4.00\ut{s}\\ g&=9.80665\ut{m/s^2} \end{cases} S=v0t+12at2,S=v_0t+\frac{1}{2}at^2, H=v0(4)+12(g)(4)2 \begin{aligned} -H&=v_0(4)+\frac{1}{2}(-g)(4)^2\\ \end{aligned} v0=710000(2551910028019)[m/s]6.146086167351901[m/s]6.15[m/s] \begin{aligned} v_0&=\frac{7 }{10000}\left(25519-100 \sqrt{28019}\right)\ut{m/s}\\ &\approx6.146086167351901\ut{m/s}\\ &\approx6.15\ut{m/s}\\ \end{aligned} (e)\ab{e} [Up]\title{Up}