$$ \begin{cases}
t_1 &= 1.12\ut{s} &=\text{Time at }h_{\max}\\
t_2 &= 6.00\ut{s} &=\text{Time at Ground}\\
a&=-g&=-9.80665\ut{m/s^2}
\end{cases} $$
$$\ab{a}$$
$$v=v_0+at,$$
$$ \begin{aligned}
v_0&=v-at\\
&=0-(-g)t_1\\
&=9.80665\ut{m/s^2}\cdot1.12\ut{s}\\
&=\frac{1372931}{125000}\ut{m/s}\\
&=10.983448\ut{m/s}\\
&\approx11.0\ut{m/s}
\end{aligned} $$
$$\ab{b}$$
$$S=vt-\frac{1}{2}at^2,$$
$$ \begin{aligned}
h_{\max}&=(0)t-\frac{1}{2}(-g)(1.12\ut{s})^2\\
&=\frac{9610517}{1562500}\ut{m}\\
&=6.15073088\ut{m}\\
&\approx6.15\ut{m}
\end{aligned} $$
$$\ab{c}$$
$$S=v_0t+\frac{1}{2}at^2,$$
$$ \begin{aligned}
-H&=v_0t+\frac{1}{2}at^2\\
&=(10.983448\ut{m/s})(6.00\ut{s})+\frac{1}{2}(-g)(6.00\ut{s})^2\\
&=-\frac{27654753}{250000}\ut{m}\\
&=-110.619012\ut{m}\\
&\approx -111\ut{m}\\
\end{aligned} $$
$$\Ans = H\approx 111\ut{m}$$
'11판 > 2. 직선운동' 카테고리의 다른 글
2-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.11 |
---|---|
2-15 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.11 |
2-13 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.26 |
2-12 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.25 |
2-11 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.25 |