$$ \begin{cases}
a&=-g=-9.80665\ut{m/s^2}\\
h&=15\ut{m}\\
v_0&=-10\ut{m/s}\\
\end{cases} $$
$$\ab{a}$$
$$2aS=v^2-v_0^2,$$
$$ \begin{aligned}
v&=\sqrt{2as+v_0^2}\\
&=\sqrt{2(-g)(-15)+(-10)^2}\\
&=\sqrt{100+30g}\\
&=\frac{1}{20}\sqrt{\frac{788399}{5}}\ut{m/s}\\
&\approx19.85445793770256\ut{m/s}\\
&\approx19.9\ut{m/s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
S&=v_0t+\frac{1}{2}at^2\\
-15&=-10t-\frac{1}{2}gt^2\\
\end{aligned} $$
$$ \begin{aligned}
t&=\frac{\sqrt{30 g+100}-10}{g}\\
&=\frac{200 \left(\sqrt{3941995}-1000\right)}{196133}\ut{s}\\
&\approx1.004875052918433\ut{s}\\
&\approx1.00\ut{s}
\end{aligned} $$
$$ \begin{cases}
a&=-g=-9.80665\ut{m/s^2}\\
h&=15\ut{m}\\
v_0&=10\ut{m/s}\\
\end{cases} $$
$$\ab{c}$$
$$2aS=v^2-v_0^2,$$
$$ \begin{aligned}
v&=\sqrt{2as+v_0^2}\\
&=\sqrt{2(-g)(-15)+(10)^2}\\
&=\sqrt{100+30g}\\
&=\frac{1}{20}\sqrt{\frac{788399}{5}}\ut{m/s}\\
&\approx19.85445793770256\ut{m/s}\\
&\approx19.9\ut{m/s}\\
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
S&=v_0t+\frac{1}{2}at^2\\
-15&=10t-\frac{1}{2}gt^2\\
\end{aligned} $$
$$ \begin{aligned}
t&=\frac{\sqrt{30g+100}+10}{g}\\
&=\frac{200 \left(1000+\sqrt{3941995}\right)}{196133}\ut{s}\\
&\approx3.04430747887429\ut{s}\\
&\approx3.04\ut{s}
\end{aligned} $$
'11판 > 2. 직선운동' 카테고리의 다른 글
2-14 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.28 |
---|---|
2-13 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.26 |
2-11 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.25 |
2-10 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.25 |
2-9 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.25 |