$$ \begin{cases}
v_0&=0\\
v_1&=31\ut{m/s}\\
a_{0\rarr1}&=2.6\ut{m/s^2}\\
a_{1\rarr2}&=-1.4\ut{m/s^2}\\
v_2&=0
\end{cases} $$
$$\ab{a}$$
$$v=v_0+at,$$
$$ \begin{aligned}
t_{0\rarr1}&=\frac{v_1-v_0}{a}\\
&=\frac{(31\ut{m/s})-0}{2.6\ut{m/s^2}}\\
&=\frac{155}{13}\ut{s}
\end{aligned} $$
$$ \begin{aligned}
t_{1\rarr2}&=\frac{v_2-v_1}{a}\\
&=\frac{(0)-(31\ut{m/s})}{-1.4\ut{m/s^2}}\\
&=\frac{155}{7}\ut{s}
\end{aligned} $$
$$ \begin{aligned}
\Sigma t&= \frac{155}{13}\ut{s}+\frac{155}{7}\ut{s}\\
&=\frac{3100}{91}\ut{s}\\
&\approx 34.06593406593407\ut{s}\\
&\approx 34\ut{s}\\
\end{aligned} $$
$$\ab{b}$$
$$2aS=v^2-v_0^2,$$
$$ \begin{aligned}
S_{0\rarr1}&=\frac{v_1^2-v_0^2}{2a_{0\rarr1}}\\
&=\frac{(31\ut{m/s})^2-0^2}{2(2.6\ut{m/s^2})}\\
&=\frac{4805}{26}\ut{m}
\end{aligned} $$
$$ \begin{aligned}
S_{1\rarr2}&=\frac{v_2^2-v_1^2}{2a_{1\rarr2}}\\
&=\frac{0^2-(31\ut{m/s})^2}{2(-1.4\ut{m/s^2})}\\
&=\frac{4805}{14}\ut{m}
\end{aligned} $$
$$ \begin{aligned}
\Sigma S&= \frac{4805}{26}\ut{m}+\frac{4805}{14}\ut{m}\\
&=\frac{48050}{91}\ut{m}\\
&\approx 528.021978021978\ut{m}\\
&\approx 5.3\times10^2\ut{m}\\
\end{aligned} $$
'11판 > 2. 직선운동' 카테고리의 다른 글
2-11 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.25 |
---|---|
2-10 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.25 |
2-8 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.25 |
2-7 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.23 |
2-6 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.23 |