$$ \begin{cases}
H&=100\ut{m}\\
v_0&=0
\end{cases} $$
$$\ab{a}$$
$$2aS=v^2-v_0^2,$$
$$ \begin{aligned}
v&=\sqrt{2aS+v_0^2}\\
&=\sqrt{2(-g)(-H)+(0)^2}\\
&=\sqrt{2gH}\\
&=\sqrt{2(9.80665\ut{m/s^2})(100\ut{m})}\\
&=\frac{\sqrt{196133}}{10}\ut{m/s}\\
&\approx44.28690551393267\ut{m/s}\\
&\approx4\times10\ut{m/s}\\
\end{aligned} $$
$$\ab{b}$$
$$S=v_0t+\frac{1}{2}at^2,$$
$$ \begin{aligned}
t&=\sqrt{\frac{2S}{a}}\\
&=\sqrt{\frac{2(-H)}{-g}}\\
&=\sqrt{\frac{2H}{g}}\\
&=\sqrt{\frac{2(100\ut{m})}{(9.80665\ut{m/s^2})}}\\
&=\frac{2000}{\sqrt{196133}}\ut{sec}\\
&\approx4.516007557517876\ut{sec}\\
&\approx5\ut{sec}\\
\end{aligned} $$
$$\ab{c}$$
$$2aS=v^2-v_0^2,$$
$$ \begin{aligned}
v&=\sqrt{2aS+v_0^2}\\
&=\sqrt{2(-g)(-H)+(0)^2}\\
&=\sqrt{2gH}\\
&=\sqrt{2(9.80665\ut{m/s^2})(50\ut{m})}\\
&=\frac{1}{10}\sqrt{\frac{196133}{2}}\ut{m/s}\\
&\approx31.3155712066697\ut{m/s}\\
&\approx3\times10\ut{m/s}\\
\end{aligned} $$
$$\ab{d}$$
$$S=v_0t+\frac{1}{2}at^2,$$
$$ \begin{aligned}
t&=\sqrt{\frac{2S}{a}}\\
&=\sqrt{\frac{2(-H)}{-g}}\\
&=\sqrt{\frac{2H}{g}}\\
&=\sqrt{\frac{2(50\ut{m})}{(9.80665\ut{m/s^2})}}\\
&=1000 \sqrt{\frac{2}{196133}}\ut{sec}\\
&\approx3.193299567810587\ut{sec}\\
&\approx3\ut{sec}\\
\end{aligned} $$
'11판 > 2. 직선운동' 카테고리의 다른 글
2-8 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.25 |
---|---|
2-7 할리데이 11판 솔루션 일반물리학 (0) | 2023.06.23 |
2-5 할리데이 11판 솔루션 일반물리학 (2) | 2022.10.12 |
2-4 할리데이 11판 솔루션 일반물리학 (0) | 2022.10.10 |
2-3 할리데이 11판 솔루션 일반물리학 (0) | 2022.10.10 |