10판/4. 2차원운동과 3차원운동

4-27 할리데이 10판 솔루션 일반물리학

짱세디럭스 2020. 7. 27. 21:22
{v0=(290.0[km/h],30.0°)Δx=700[m]a=gj^g9.80665[m/s2]\begin{cases} \vec v_0 &= (290.0\ut{km/h},-30.0\degree)\\ \Delta x &= 700\ut{m}\\ \vec a &= -g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases} v0=(290.0[km/h],30.0°)=(7259[m/s],30.0°)=72563i^72518j^\begin{aligned} \vec v_0 &= (290.0\ut{km/h},-30.0\degree)\\ &=(\frac{725}{9}\ut{m/s},-30.0\degree)\\ &=\frac{725}{6 \sqrt{3}}\i-\frac{725}{18}\j\\ \end{aligned}
(a) t=?t=? Δx=vxt,t=Δxvx=70072563[s]=168329[s]10.0339495059[s]10.0[s]\begin{aligned} \Delta x &= v_x t,\\ t&=\frac{\Delta x}{v_x}\\ &=\frac{700}{\frac{725}{6 \sqrt{3}}}\ut{s}\\ &=\frac{168\sqrt{3}}{29}\ut{s}\\ &\approx 10.0339495059\ut{s}\\ &\approx 10.0\ut{s} \end{aligned}
(b) h=?h=? Δy=vy0t+12ayt2h=(72518)(168329)+12(g)(168329)2h=7003+42336841g897.812649075[m]898[m]\begin{aligned} \Delta y &= v_{y0}t+\frac{1}{2}a_yt^2\\ -h &= \(-\frac{725}{18}\)\(\frac{168\sqrt{3}}{29}\)+\frac{1}{2}(-g)\(\frac{168\sqrt{3}}{29}\)^2\\ h &=\frac{700}{\sqrt{3}}+\frac{42336}{841}g\\ &\approx 897.812649075\ut{m}\\ &\approx 898\ut{m} \end{aligned}