$$\begin{cases}
\vec a &= -g\j\\
g &= 9.8\ut{m/s^2}\\
\end{cases}$$
$$\begin{cases}
\Delta x &= 8.95\ut{m}\\
v_0 &= 9.5\ut{m/s}\\
\end{cases}$$
$$\begin{cases}
v_x &= v_0\cos\theta\\
v_y &= v_0\sin\theta\\
\end{cases}$$
$$\begin{aligned}
\Delta y &= v_{y0}t+\frac{1}{2}a_yt^2,\\
0 &= (v_0\sin\theta) t+\frac{1}{2}(-g)t^2\\
0 &= v_0\sin\theta -\frac{1}{2}gt\\
t &= \frac{2v_0}{g}\sin\theta\\
\end{aligned}$$
$$\begin{aligned}
\Delta x &= v_xt,\\
&= (v_0\cos\theta)\(\frac{2v_0}{g}\sin\theta\)\\
&= \frac{v_0^2}{g}\sin(2\theta)\\
\end{aligned}$$
$$\begin{aligned}
&\text{at max }\Delta x,\\
2\theta&=\frac{\pi}{2}\ut{rad}\\
\therefore \theta&=\frac{\pi}{4}\ut{rad}\\
\end{aligned}$$
$$\title{Find max x}$$
$$\begin{aligned}
\Delta y &= v_{y0}t+\frac{1}{2}a_yt^2,\\
0 &= \(v_0\sin\frac{\pi}{4}\)t+\frac{1}{2}(-g)t^2\\
0 &= \frac{v_0}{\sqrt{2}}-\frac{1}{2}gt\\
t &=\frac{v_0\sqrt{2}}{g}\\
\end{aligned}$$
$$\begin{aligned}
\max \Delta x &= v_xt,\\
&= \(v_0\cos\frac{\pi}{4}\)\(\frac{v_0\sqrt{2}}{g}\)\\
&= \frac{v_0^2}{g}\\
\end{aligned}$$
$$\begin{aligned}
\Ans &= \max \Delta x-\Delta x\\
&=\frac{(9.5\ut{m/s})^2}{9.8\ut{m/s^2}}-8.95\ut{m}\\
&=\frac{127}{490}\ut{m}\\
&\approx 0.259183673469\ut{m}\\
&\approx 0.26\ut{m}\\
\end{aligned}$$
'10판 > 4. 2차원운동과 3차원운동' 카테고리의 다른 글
4-26 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.27 |
---|---|
4-25 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.23 |
4-23 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.19 |
4-22 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.19 |
4-21 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.07 |