$$\begin{cases}
\vec a &= -g\j\\
g &\approx 9.80665\ut{m/s^2}\\
\end{cases}$$
$$\begin{cases}
h &= 40.4\ut{m}\\
\vec v_0 &= 285\i\ut{m/s}\\
\end{cases}$$
(a) $t=?$ $$\begin{aligned} \Delta y &= v_{y0}t+\frac{1}{2}a_yt^2,\\ -h &= (0)t+\frac{1}{2}(-g)t^2\\ h &= \frac{1}{2}gt^2\\ t &=\sqrt{\frac{2h}{g}}\\ &\approx2.8704193075\ut{s}\\ &\approx2.87\ut{s} \end{aligned}$$
(b) $\Delta x=?$ $$\begin{aligned} \Delta x &= v_x t\\ &=v_x \sqrt{\frac{2h}{g}}\\ &\approx 818.069502637\ut{m}\\ &\approx 818\ut{m}\\ \end{aligned}$$
(c) $v_{tx}=?$ $$\begin{aligned} v_{tx} &= v{x0} \\ &= 285\ut{m/s} \end{aligned}$$
(d) $v_{ty}=?$ $$\begin{aligned} 2a\Delta y &= v_y^2-v_{y0}^2,\\ 2(-g)(-h) &= v_y^2-(0)^2\\ v_y &= \sqrt{2gh}\\ &\approx 28.1491975019\ut{m}\\ &\approx 28.1\ut{m}\\ \end{aligned}$$
(a) $t=?$ $$\begin{aligned} \Delta y &= v_{y0}t+\frac{1}{2}a_yt^2,\\ -h &= (0)t+\frac{1}{2}(-g)t^2\\ h &= \frac{1}{2}gt^2\\ t &=\sqrt{\frac{2h}{g}}\\ &\approx2.8704193075\ut{s}\\ &\approx2.87\ut{s} \end{aligned}$$
(b) $\Delta x=?$ $$\begin{aligned} \Delta x &= v_x t\\ &=v_x \sqrt{\frac{2h}{g}}\\ &\approx 818.069502637\ut{m}\\ &\approx 818\ut{m}\\ \end{aligned}$$
(c) $v_{tx}=?$ $$\begin{aligned} v_{tx} &= v{x0} \\ &= 285\ut{m/s} \end{aligned}$$
(d) $v_{ty}=?$ $$\begin{aligned} 2a\Delta y &= v_y^2-v_{y0}^2,\\ 2(-g)(-h) &= v_y^2-(0)^2\\ v_y &= \sqrt{2gh}\\ &\approx 28.1491975019\ut{m}\\ &\approx 28.1\ut{m}\\ \end{aligned}$$
'10판 > 4. 2차원운동과 3차원운동' 카테고리의 다른 글
4-25 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.23 |
---|---|
4-24 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.23 |
4-22 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.19 |
4-21 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.07 |
4-20 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.06 |