$$\begin{cases}
\vec a&=3t\i+4t\j\ut{m/s^2}\\
\vec r_0&=20.0\i+40.0\j\ut{m}\\
\vec v_0&=5.00\i+2.00\j\ut{m/s}\\
\end{cases} $$
$$ \begin{aligned}
\vec v&=\Delta \vec v+\vec v_0\\
&=\int_0^t \vec a\dd t+\vec v_0\\
&=\int_0^t 3t\i+4t\j\dd t+\vec v_0\\
&=\(\frac{3}{2}t^2+5\)\i+\(2 t^2+2\)\j\\
\end{aligned} $$
$$ \begin{aligned}
\vec r&=\Delta \vec r+\vec r_0\\
&=\int_0^t \vec v\dd t+\vec r_0\\
&=\int_0^t \(\frac{3}{2}t^2+5\)\i+\(2 t^2+2\)\j\dd t+\vec r_0\\
&=\frac{1}{8} \left(t^4+20 t^2+160\right)\i+\(\frac{t^4}{6}+t^2+40\)\j\\
\end{aligned} $$
(a) $\vec r_{t=4.00}=?$ $$ \begin{aligned} \vec r_{4}&=\frac{1}{8} \left(4^4+20\cdot 4^2+160\right)\i+\(\frac{4^4}{6}+4^2+40\)\j\\ &=92\i+\frac{296}{3}\j\ut{m}\\ &\approx 92.0\i+98.66666666666667\j\ut{m}\\ &\approx 92.0\i+98.7\j\ut{m}\\ \end{aligned} $$
(b) $\theta_{\vec v_{t=4.00}}=?$ $$ \begin{aligned} \vec v_{4}&=\(\frac{3}{2}4^2+5\)\i+\(2\cdot4^2+2\)\j\\ &=29\i+34\j\\ \end{aligned} $$ $$ \begin{aligned} \theta_{\vec v_4}&=\tan^{-1}\frac{34}{29}\\ &\approx0.8645972343668997\ut{rad}\\ &\approx0.865\ut{rad}\\ \end{aligned} $$
(a) $\vec r_{t=4.00}=?$ $$ \begin{aligned} \vec r_{4}&=\frac{1}{8} \left(4^4+20\cdot 4^2+160\right)\i+\(\frac{4^4}{6}+4^2+40\)\j\\ &=92\i+\frac{296}{3}\j\ut{m}\\ &\approx 92.0\i+98.66666666666667\j\ut{m}\\ &\approx 92.0\i+98.7\j\ut{m}\\ \end{aligned} $$
(b) $\theta_{\vec v_{t=4.00}}=?$ $$ \begin{aligned} \vec v_{4}&=\(\frac{3}{2}4^2+5\)\i+\(2\cdot4^2+2\)\j\\ &=29\i+34\j\\ \end{aligned} $$ $$ \begin{aligned} \theta_{\vec v_4}&=\tan^{-1}\frac{34}{29}\\ &\approx0.8645972343668997\ut{rad}\\ &\approx0.865\ut{rad}\\ \end{aligned} $$
'10판 > 4. 2차원운동과 3차원운동' 카테고리의 다른 글
4-21 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.07 |
---|---|
4-20 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.06 |
4-18 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.06 |
4-17 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.03 |
4-16 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.03 |