$$\begin{cases}
\vec a&=5.00\i+7.00\j\ut{m/s^2}\\
\vec v_0&=4.00\i\ut{m/s}\\
\end{cases} $$
$$t_{\Delta x=10}=?$$
$$ \begin{aligned}
\Delta r_x &= v_{x0}t+\frac{1}{2}a_xt^2\\
10 &= 4t+\frac{1}{2}\cdot5t^2\\
t_{\Delta x=10}&=\frac{2}{5} \left(\sqrt{29}-2\right)
\end{aligned} $$
$$v_{\Delta x=10}=?$$
$$ \begin{aligned}
\vec v&=\vec v_0 + \vec a t,\\
\vec v_{\Delta x=10}&=\vec v_0 + \vec a t_{\Delta x=10}\\
&=(4\i) + (5\i+7\j) \cdot \frac{2}{5} \left(\sqrt{29}-2\right)\\
&=2 \sqrt{29}\i+\frac{14}{5} \left(\sqrt{29}-2\right)\j\ut{m/s}
\end{aligned} $$
(a) $\abs{\vec v_{\Delta x=10}}=?$ $$ \begin{aligned} \abs{\vec v_{\Delta x=10}}&=\sqrt{\(2 \sqrt{29}\)^2+\left\{\frac{14}{5} \left(\sqrt{29}-2\right)\right\}^2}\ut{m/s}\\ &=\frac{2}{5} \sqrt{2342-196 \sqrt{29}}\ut{m/s}\\ &\approx14.34716807067729\ut{m/s}\\ &\approx14.3\ut{m/s}\\ \end{aligned} $$
(b) $\theta_{\vec v_{\Delta x=10}}=?$ $$ \begin{aligned} \theta_{\vec v_{\Delta x=10}}&=\tan^{-1}\(\frac{\frac{14}{5} \left(\sqrt{29}-2\right)}{2 \sqrt{29}}\)\\ &=\tan ^{-1}\left(\frac{7}{5}-\frac{14}{5 \sqrt{29}}\right)\\ &\approx 0.7216847492576719\ut{rad}\\ &\approx 0.722\ut{rad}\\ \end{aligned} $$
(a) $\abs{\vec v_{\Delta x=10}}=?$ $$ \begin{aligned} \abs{\vec v_{\Delta x=10}}&=\sqrt{\(2 \sqrt{29}\)^2+\left\{\frac{14}{5} \left(\sqrt{29}-2\right)\right\}^2}\ut{m/s}\\ &=\frac{2}{5} \sqrt{2342-196 \sqrt{29}}\ut{m/s}\\ &\approx14.34716807067729\ut{m/s}\\ &\approx14.3\ut{m/s}\\ \end{aligned} $$
(b) $\theta_{\vec v_{\Delta x=10}}=?$ $$ \begin{aligned} \theta_{\vec v_{\Delta x=10}}&=\tan^{-1}\(\frac{\frac{14}{5} \left(\sqrt{29}-2\right)}{2 \sqrt{29}}\)\\ &=\tan ^{-1}\left(\frac{7}{5}-\frac{14}{5 \sqrt{29}}\right)\\ &\approx 0.7216847492576719\ut{rad}\\ &\approx 0.722\ut{rad}\\ \end{aligned} $$
'10판 > 4. 2차원운동과 3차원운동' 카테고리의 다른 글
4-20 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.06 |
---|---|
4-19 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.06 |
4-17 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.03 |
4-16 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.03 |
4-15 할리데이 10판 솔루션 일반물리학 (0) | 2020.07.02 |