10판/4. 2차원운동과 3차원운동

4-12 할리데이 10판 솔루션 일반물리학

짱세디럭스 2020. 6. 29. 16:32
{r0=(30.0,0)[m]v0=(0,10.0)[m/s]r30.0=(0,40.0)[m]v30.0=(10.0,0)[m/s]\begin{cases} \vec r_0 &= (30.0,0)\ut{m}\\ \vec v_0 &= (0,-10.0)\ut{m/s}\\ \vec r_{30.0} &= (0,40.0)\ut{m}\\ \vec v_{30.0} &= (10.0,0)\ut{m/s}\\ \end{cases}
(a),(b)rˉ030=?\bar r_{0\rarr30}=? rˉ030=r30.0r0=(0,40.0)(30.0,0)=(30.0,40.0)[m]\begin{aligned} \bar r_{0\rarr 30} &= r_{30.0} - r_0\\ &=(0,40.0)-(30.0,0)\\ &=(-30.0,40.0)\ut{m}\\ \end{aligned}
(a) rˉ030=(30.0)2+40.02=50.0[m]\begin{aligned} \abs{\bar r_{0\rarr 30}} &= \sqrt{(-30.0)^2+40.0^2}\\ &=50.0\ut{m}\\ \end{aligned}
(b) θrˉ030=πtan1432.21429743559[rad]2.21[rad]\begin{aligned} \theta_{\bar r_{0\rarr 30}} &= \pi-\tan^{-1}\frac{4}{3}\\ &\approx 2.21429743559\ut{rad}\\ &\approx 2.21\ut{rad}\\ \end{aligned}
(c),(d)vˉ030=?\bar v_{0\rarr30}=? vˉ030.0=r030.0t030.0=(30.0,40.0)30.0=(1,43)[m/s]\begin{aligned} \bar v_{0\rarr 30.0} &= \frac{r_{0\rarr 30.0}}{t_{0\rarr30.0}}\\ &=\frac{(-30.0,40.0)}{30.0}\\ &=\(-1,\frac{4}{3}\)\ut{m/s}\\ \end{aligned}
(c) vˉ030.0=(1)2+(43)2=53[m/s]1.66666666667[m/s]1.67[m/s]\begin{aligned} \abs{\bar v_{0\rarr 30.0}} &= \sqrt{(-1)^2+\(\frac{4}{3}\)^2}\\ &=\frac{5}{3}\ut{m/s}\\ &\approx1.66666666667\ut{m/s}\\ &\approx1.67\ut{m/s}\\ \end{aligned}
(d) θvˉ030.0=πtan1432.21429743559[rad]2.21[rad]\begin{aligned} \theta_{\bar v_{0\rarr 30.0}} &= \pi-\tan^{-1}\frac{4}{3}\\ &\approx 2.21429743559\ut{rad}\\ &\approx 2.21\ut{rad}\\ \end{aligned}
(e),(f)aˉ030=?\bar a_{0\rarr30}=? aˉ030.0=v030.0t030.0=(1,43)30.0=(130,245)[m/s2]\begin{aligned} \bar a_{0\rarr 30.0} &= \frac{v_{0\rarr 30.0}}{t_{0\rarr30.0}}\\ &=\frac{\(-1,\frac{4}{3}\)}{30.0}\\ &=\(-\frac{1}{30},\frac{2}{45}\)\ut{m/s^2}\\ \end{aligned}
(e) aˉ030.0=(130)2+(245)2=118[m/s2]0.0555555555556[m/s2]5.56×102[m/s2]\begin{aligned} \abs{\bar a_{0\rarr 30.0}} &= \sqrt{\(-\frac{1}{30}\)^2+\(\frac{2}{45}\)^2}\\ &=\frac{1}{18}\ut{m/s^2}\\ &\approx0.0555555555556\ut{m/s^2}\\ &\approx5.56\times10^{-2}\ut{m/s^2}\\ \end{aligned}
(f) θvˉ030.0=πtan1432.21429743559[rad]2.21[rad]\begin{aligned} \theta_{\bar v_{0\rarr 30.0}} &= \pi-\tan^{-1}\frac{4}{3}\\ &\approx 2.21429743559\ut{rad}\\ &\approx 2.21\ut{rad}\\ \end{aligned}