$$\vec r = 5.00t\ut{m}\hat i +(et+ft^2)\ut{m}\hat j$$
$$\begin{cases} \theta_0 &= 35\degree\\
\theta_{12} &= 0\\
\end{cases} $$
$$\begin{aligned} \vec v =&\dxt{\vec r}\\
=& 5.00\ut{m/s}\hat i +(e+2ft)\ut{m/s}\hat j \end{aligned}$$
(a)
$$\begin{aligned} \vec v_0 =&5.00\ut{m/s}\hat i +(e+2f\cdot 0)\ut{m/s}\hat j\\
=&5.00\ut{m/s}\hat i +e\ut{m/s}\hat j\\
\end{aligned}$$
$$\begin{aligned} \theta_0 =& \tan^{-1}\(\frac{e}{5.00}\)\\
=& 35\degree\\
\end{aligned}$$
$$\begin{aligned} e =& 5\tan35\degree\ut{m/s}\\
\approx&3.50103769105\ut{m/s}\\
\approx&3.50\ut{m/s}\\
\end{aligned}$$
(b)
$$\begin{aligned} \vec v_{14} =&5.00\ut{m/s}\hat i +(5\tan35\degree+2f\cdot 14)\ut{m/s}\hat j\\
=&5.00\ut{m/s}\hat i +(5\tan35\degree+28f)\ut{m/s}\hat j\\
\end{aligned}$$
$$\theta_{12} = \tan^{-1}\(\frac{5\tan35\degree+28f}{5.00}\)=0$$
$$\therefore 5\tan35\degree+28f=0$$
$$\begin{aligned} f =& -\frac{5\tan35\degree}{28}\ut{m/s}\\
\approx&-0.12503706039459103\ut{m/s}\\
\approx&-0.125\ut{m/s}\\
\end{aligned}$$
'10판 > 4. 2차원운동과 3차원운동' 카테고리의 다른 글
| 4-12 할리데이 10판 솔루션 일반물리학 (0) | 2020.06.29 |
|---|---|
| 4-11 할리데이 10판 솔루션 일반물리학 (0) | 2020.06.28 |
| 4-9 할리데이 10판 솔루션 일반물리학 (0) | 2020.06.18 |
| 4-8 할리데이 10판 솔루션 일반물리학 (0) | 2019.08.14 |
| 4-7 할리데이 10판 솔루션 일반물리학 (2) | 2019.08.14 |