기타 풀이/회전관성

두꺼운 원기둥의 회전 관성

짱세디럭스 2024. 5. 8. 02:39

[Rotational Inertia of Ring Cylinder]\title{Rotational Inertia of Ring Cylinder} put {Ri:Inner RadiusRo:Outer Radius \put \begin{cases} R_i:\text{Inner Radius}\\ R_o:\text{Outer Radius}\\ \end{cases} ρ= ⁣dm ⁣dv=MV=MAH=MπH(Ro2Ri2)(1) \rho=\frac{\dd m}{\dd v}=\frac{M}{V}=\frac{M}{AH}=\frac{M}{\pi H( {R_o}^2- {R_i}^2) } \taag1 l=rθ, ⁣dl=r ⁣dθ \begin{aligned} l&=r\theta,\\ \dd l&=r \dd \theta\\ \end{aligned}  ⁣da= ⁣dl ⁣dr=(r ⁣dθ) ⁣dr=r ⁣dr ⁣dθ(2) \begin{aligned} \dd a&=\dd l\cdot\dd r \\ &=(r \dd \theta)\cdot\dd r \\ &=r \cdot \dd r\dd \theta \taag2\\ \end{aligned}  ⁣dv= ⁣da ⁣dh=(r ⁣dr ⁣dθ) ⁣dh=r ⁣dr ⁣dθ ⁣dh(3) \begin{aligned} \dd v&=\dd a \cdot \dd h\\ &=(r \dd r \dd \theta) \cdot \dd h\\ &=r \cdot \dd r \dd \theta \dd h\taag3\\ \end{aligned}  ⁣dm=ρ ⁣dv=ρ(r ⁣dr ⁣dθ ⁣dh)=ρr ⁣dr ⁣dθ ⁣dh(4) \begin{aligned} \dd m&=\rho\cdot\dd v\\ &=\rho\cdot (r \dd r \dd \theta \dd h)\\ &=\rho r\cdot\dd r \dd \theta \dd h\taag4\\ \end{aligned}  ⁣dI=r2 ⁣dm=r2(ρr ⁣dr ⁣dθ ⁣dh)=ρr3 ⁣dr ⁣dθ ⁣dh(5) \begin{aligned} \dd I&=r^2\cdot \dd m\\ &=r^2\cdot \(\rho r\dd r \dd \theta \dd h\)\\ &=\rho r^3\cdot\dd r \dd \theta \dd h\taag5\\ \end{aligned} IRing Cylinder=V ⁣dI=0H02πRiRoρr3 ⁣dr ⁣dθ ⁣dh=ρ(RiRor3 ⁣dr)(02π ⁣dθ)(0H ⁣dh)={MπH(Ro2Ri2)}(Ro4Ri44)(2π)(H)=12M(Ri2+Ro2) \begin{aligned} I_{\text{Ring Cylinder}}&=\oiiint_V \dd I\\ &=\int_0^{H}\int_0^{2\pi}\int_{R_i}^{R_o} \rho r^3\dd r \dd \theta \dd h\\ &=\rho\cdot\(\int_{R_i}^{R_o} r^3\dd r\)\cdot\(\int_0^{2\pi} \dd \theta\)\cdot\(\int_0^{H} \dd h\)\\ &=\bra{\frac{M}{\pi H( {R_o}^2- {R_i}^2) }}\cdot\(\frac{{R_o}^4-{R_i}^4}{4}\)\cdot(2\pi)\cdot(H)\\ &=\frac{1}{2}M({R_i}^2+{R_o}^2)\\ \end{aligned}