$$ \begin{cases}
\vec v_0&=v_0\i\\
v_{A1}&=3.50\ut{m/s}, \theta_{A1}&=22.0\degree\\
v_{B1}&=2.00\ut{m/s}
\end{cases} $$
$$ \begin{cases}
\vec v_{A1}&=3.5\cos22\degree\i+3.5\sin22\degree\j\\
\vec v_{B1}&=2\cos\theta\i+2\sin\theta\j\\
\end{cases} $$
$$\Delta \Sigma \vec P=0,$$
$$ \begin{aligned}
\vec P_0&=\vec P_{A1}+\vec P_{B1}\\
m\vec v_0&=m\vec v_{A1}+m\vec v_{B1}\\
\vec v_0&=\vec v_{A1}+\vec v_{B1}\\
\end{aligned} $$
$$ \begin{aligned}
v_0\i&=(3.5\cos22\degree\i+3.5\sin22\degree\j)\\
&~~~~~+(2\cos\theta\i+2\sin\theta\j)\\
&=(3.5\cos22\degree+2\cos\theta)\i\\
&~~~~~+(3.5\sin22\degree+2\sin\theta)\j\\
\end{aligned} $$
$$ \begin{cases}
v_0&=3.5\cos22\degree+2\cos\theta\\
0&=3.5\sin22\degree+2\sin\theta
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
\theta &= -\sin ^{-1}\(\frac{7}{4}\sin 22\degree\)\\
&\approx -0.7149260006297955\ut{rad}\\
&\approx -0.715\ut{rad}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
v_0&=3.5\cos22\degree+2\cos\theta\\
&=3.5\cos22\degree+2\cos\bra{-\sin ^{-1}\(\frac{7}{4}\sin 22\degree\)}\\
&\approx 4.755426999823815\ut{m/s}\\
&\approx 4.76\ut{m/s}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{cases}
\Sigma \KE_f&=\frac{1}{2}m{v_{A1}}^2+\frac{1}{2}m{v_{B1}}^2\\
\KE_i&=\frac{1}{2}m{v_0}^2\\
\end{cases} $$
$$ \begin{aligned}
\frac{\Sigma \KE_f}{\KE_i}&=\frac{\frac{1}{2}m{v_{A1}}^2+\frac{1}{2}m{v_{B1}}^2}{\frac{1}{2}m{v_0}^2}\\
&=\frac{{v_{A1}}^2+{v_{B1}}^2}{{v_0}^2}\\
&\approx 0.7185786785926022 \ne 1\\
\end{aligned} $$
$$\text{Not Conservation}$$
'11판 > 9. 질량중심과 선운동량' 카테고리의 다른 글
9-9 할리데이 11판 솔루션 일반물리학 (2) | 2024.04.14 |
---|---|
9-8 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.14 |
9-6 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.13 |
9-5 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.13 |
9-4 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.13 |