$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\end{cases} $$
$$ \put \begin{cases}
0 : \text{Start}\\
1 : v_y=65\ut{m/s}\\
2 : \text{Highest Point}
\end{cases} $$
$$ \begin{cases}
m&=0.650\ut{kg}\\
\KE_0 &= 1700\ut{J}\\
\Delta h_{0\rarr2}&=+180\ut{m}\\
g&=9.80665\ut{m/s^2}\\
\end{cases} $$
$$\ab{a}$$
$$\vec v_2 = v_x\i+0\j,$$
$$ \therefore v_2=v_x$$
$$\Sigma E_0=\Sigma E_2,$$
$$ \begin{aligned}
\KE_0+\GE_0&=\KE_2+\GE_2\\
\KE_2&=\KE_0-\Delta \GE\\
\frac{1}{2}m{v_2}^2&=\KE_0-\Delta (mgh)\\
\end{aligned} $$
$$ \begin{aligned}
v_x&=\sqrt{\frac{2(\KE_0-mg\Delta h)}{m}}\\
&=2 \sqrt{\frac{17000}{13}-90 g}\\
&\approx 41.235606346569355\ut{m/s}\\
&\approx 41\ut{m/s}\\
\end{aligned} $$
$$\ab{b}$$
$$2aS=v^2-{v_0}^2,$$
$$2(-g)(\Delta h)=0^2-{v_{0y}}^2$$
$$ \begin{aligned}
v_{0y}&=\sqrt{2g\Delta h}\\
&=6\sqrt{10g}\\
&\approx 59.41711874535822\ut{m/s}\\
&\approx 59\ut{m/s}
\end{aligned} $$
$$\ab{c}$$
$$2aS=v^2-{v_0}^2,$$
$$2(-g)S={v_1}^2-{v_0}^2$$
$$ \begin{aligned}
S&=\frac{{v_1}^2-{v_0}^2}{-2g}\\
&=180-\frac{4225}{2g}\\
&\approx -35.41504999158734\ut{m}\\
&\approx -35\ut{m}\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-35 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
---|---|
8-34 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-32 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-31 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-30 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |