$$ \begin{cases}
L&=0.80\ut{m}\\
m&=0.12\ut{kg}\\
g&=9.80665\ut{m/s^2}\\
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\end{cases} $$
$$ \put \begin{cases}
0 : \text{Vertical Peak Point}\\
1 : \text{Horizontal Point}\\
2 : \text{Lowest Point}\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{cases}
v_0&=0
\end{cases} $$
$$\Sigma E_0=\Sigma E_2,$$
$$ \begin{aligned}
\KE_0+\GE_0&=\KE_2+\GE_2\\
\KE_2&=-\Delta \GE_{0\rarr2}\\
\frac{1}{2}m{v_2}^2&=-\Delta (mgh)_{0\rarr2}\\
\end{aligned} $$
$$ \begin{aligned}
v_2&=\sqrt{2g(-\Delta h_{0\rarr2})}\\
&=\sqrt{2g(2L)}\\
&=\sqrt{4gL}\\
&=4\sqrt{\frac{g}{5}}\\
&\approx 5.601899677787884\ut{m/s}\\
&\approx 5.6\ut{m/s}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\Sigma F_{2y}&=\Sigma F_{2R}\\
T-mg&=\frac{m{v_2}^2}{R}\\
\end{aligned} $$
$$ \begin{aligned}
T&=\frac{m(4gL)}{L}+mg\\
&=5mg\\
&=\frac{3g}{5}\\
&=5.88399\ut{N}\\
&\approx 5.9\ut{N}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{cases}
v_1&=0
\end{cases} $$
$$ \begin{aligned}
\cos\theta&=\frac{-\Delta h_{1\rarr f}}{L}\\
-\Delta h_{1\rarr f}&=L\cos\theta
\end{aligned} $$
$$\Sigma E_1=\Sigma E_f,$$
$$ \begin{aligned}
\GE_1+\KE_1&=\GE_f+\KE_f\\
\GE_1&=\GE_f+\KE_f\\
\KE_f&=-\Delta \GE_{1\rarr f}\\
\frac{1}{2}m{v_f}^2&=-\Delta (mgh)_{1\rarr f}\\
{v_f}^2&=2g(-\Delta h_{1\rarr f})\\
{v_f}^2&=2gL\cos\theta\\
\end{aligned} $$
$$ \Sigma F_R=T-mg\cos\theta =\frac{mv^2}{R} $$
$$ \begin{aligned}
T&=mg\cos\theta+\frac{m(2gL\cos\theta)}{L}\\
&=3mg\cos\theta
\end{aligned} $$
$$T=3mg\cos\theta=mg$$
$$3\cos\theta=1$$
$$ \begin{aligned}
\theta&=\cos^{-1}\frac{1}{3}\\
&\approx 1.2309594173407747\ut{rad}\\
&\approx 1.2\ut{rad}\\
\end{aligned} $$
$$\ab{d}$$
$$\theta=\cos^{-1}\frac{1}{3},$$
$$\text{Constant about }m$$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-34 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
---|---|
8-33 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-31 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-30 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-29 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |