$$ \begin{cases}
m&=425\ut{g}\\
L&=2.4\ut{m}\\
\theta_i&=30.0\degree\\
v_i&=0\\
g&=9.80665\ut{m/s^2}\\
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\end{cases} $$
$$\Sigma E_i=\Sigma E_f,$$
$$ \begin{aligned}
\KE_i+\GE_i&=\KE_f+\GE_f\\
mgy_i&=\frac{1}{2}m{v_f}^2+mgy_f\\
2gy_i&={v_f}^2+2gy_f\\
\end{aligned} $$
$$y=L-L\cos\theta=L(1-\cos\theta),$$
$$ v_f=\sqrt{2g(y_i-y_f)},$$
$$ \begin{aligned}
v_f&=\sqrt{2g\bra{(L-L\cos\theta_i)-(L-L\cos\theta_f)}}\\
&=\sqrt{2gL(\cos\theta_f-\cos\theta_i)}\\
\end{aligned} $$
$$\therefore v(\theta)=2 \sqrt{\frac{3g}{5}(2 \cos \theta-\sqrt{3} )}$$
$$\ab{a}$$
$$ \begin{aligned}
v(20.0\degree)&=2 \sqrt{\frac{3g}{5}(2 \cos 20.0\degree-\sqrt{3} )}\\
&\approx 1.8621646933920286\ut{m/s}\\
&\approx 1.9\ut{m/s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\max(v)&=v(0\degree)\\
&=2 \sqrt{\frac{3g}{5}(2-\sqrt{3} )}\\
&\approx 2.5112629243253703\ut{m/s}\\
&\approx 2.5\ut{m/s}\\
\end{aligned} $$
$$\ab{c}$$
$$v(\phi)=\frac{1}{3}\max(v)$$
$$ 2 \sqrt{\frac{3g}{5}(2 \cos \phi-\sqrt{3} )}=\frac{1}{3}\cdot 2 \sqrt{\frac{3g}{5}(2-\sqrt{3} )} $$
$$\cos \phi=\frac{1+4\sqrt3}{9}$$
$$ \begin{aligned}
\phi&=0.49301171100758445\ut{rad}\\
&=0.49\ut{rad}\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
| 8-17 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.29 |
|---|---|
| 8-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.29 |
| 8-14 할리데이 11판 솔루션 일반물리학 (1) | 2024.03.29 |
| 8-13 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.29 |
| 8-12 할리데이 11판 솔루션 일반물리학 (1) | 2024.03.28 |