$$ \begin{cases}
\vec r(0)&=0\i+3.0\j\ut{ft}\\
\vec r(0.25)&=8.0\i+7.0\j\ut{ft}\\
\vec r(0.50)&=16\i+9.0\j\ut{ft}\\
\vec r(0.75)&=24\i+9.0\j\ut{ft}\\
\vec r(1.00)&=32\i+7.0\j\ut{ft}\\
\vec r(1.25)&=40\i+3.0\j\ut{ft}\\
\end{cases} $$
$$ \begin{aligned}
v_{x0\rarr0.25} &= \frac{8.0\ut{ft}}{0.25\ut{s}}=32\ut{ft/s}\\
v_{x0.25\rarr0.50} &= \frac{8.0\ut{ft}}{0.25\ut{s}}=32\ut{ft/s}\\
v_{x0.50\rarr0.75} &= \frac{8.0\ut{ft}}{0.25\ut{s}}=32\ut{ft/s}\\
v_{x0.75\rarr1.00} &= \frac{8.0\ut{ft}}{0.25\ut{s}}=32\ut{ft/s}\\
v_{x1.00\rarr1.25} &= \frac{8.0\ut{ft}}{0.25\ut{s}}=32\ut{ft/s}\\
\end{aligned} $$
$$ \begin{aligned}
v_{y0\rarr0.25}&=\frac{+4\ut{ft}}{0.25\ut{s}}=+16\ut{ft/s}\\
v_{y0.25\rarr0.50}&=\frac{+2\ut{ft}}{0.25\ut{s}}=+8\ut{ft/s}\\
v_{y0.50\rarr0.75}&=\frac{0}{0.25\ut{s}}=0\\
v_{y0.75\rarr1.00}&=\frac{-2\ut{ft}}{0.25\ut{s}}=-8\ut{ft/s}\\
v_{y1.00\rarr1.25}&=\frac{-2\ut{ft}}{0.25\ut{s}}=-16\ut{ft/s}\\
\end{aligned} $$
$$ \begin{aligned}
a_{y0.125\rarr0.375}&=\frac{-8\ut{ft/s}}{0.25\ut{s}}=-32\ut{ft/s^2}\\
a_{y0.375\rarr0.625}&=\frac{-8\ut{ft/s}}{0.25\ut{s}}=-32\ut{ft/s^2}\\
a_{y0.625\rarr0.875}&=\frac{-8\ut{ft/s}}{0.25\ut{s}}=-32\ut{ft/s^2}\\
a_{y0.875\rarr1.125}&=\frac{-8\ut{ft/s}}{0.25\ut{s}}=-32\ut{ft/s^2}\\\end{aligned} $$
$$\therefore \vec a =-32\j\ut{ft/s^2}$$
$$ \begin{aligned}
\vec v(t) &= \vec v_0+\Delta \vec v\\
&=\vec v_0+\int_0^t\vec a \dd t\\
&=\vec v_0+\int_0^t\(-32\j\) \dd t\\
&=\vec v_0-32t\j \\
\end{aligned} $$
$$ \begin{aligned}
\vec r(t)&=\vec r_0+\Delta \vec r\\
&=\vec r_0+\int_0^t\vec v\dd t\\
&=\(3\j\)+\int_0^t\(\vec v_0-32t\j\)\dd t\\
&=3\j+\vec v_0t-16t^2\j\\
&=\vec v_0t+(3-16t^2)\j\\
\end{aligned} $$
$$ \begin{aligned}
\vec v_0&=\frac{\vec r(t)-(3-16t^2)\j}{t}\\
&=\frac{\vec r(1)-(3-16\cdot1^2)\j}{1}\\
&=(32\i+7.0\j)-(-13)\j\\
&=32\i+20\j\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
v_0&=\sqrt{32^2+20^2}\\
&=4\sqrt{89}\ut{ft/s}\\
&\approx 37.73592452822641\ut{ft/s}\\
&\approx 38\ut{ft/s}\\
\end{aligned} $$
$$\ab{b}$$
$$v_{h\max}=v_x=32\ut{ft/s}$$
$$\ab{c}$$
$$ \begin{aligned}
2aS&=v^2-{v_0}^2,\\
2(-a_y)(\Delta h)&=(0)^2-{v_{y0}}^2\\
\Delta h&=\frac{{v_{y0}}^2}{2a_y}\\
&=\frac{{20}^2}{2\cdot32}\ut{ft}\\
&=\frac{25}{4}\ut{ft}\\
\end{aligned} $$
$$ \begin{aligned}
H &= h_0+\Delta h\\
&= 3+\frac{25}{4}\ut{ft}\\
&= \frac{37}{4}\ut{ft}\\
&= 9.25\ut{ft}\\
&\approx 9.3\ut{ft}\\
\end{aligned} $$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-61 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.13 |
---|---|
4-60 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.13 |
4-58 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.13 |
4-57 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.13 |
4-56 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.13 |