$$ \begin{cases}
v_0&=82\ut{m/s}, \theta_0=45\degree\\
\Delta x_1 &= 686\ut{m}\\
h&=40.0\ut{m}
\end{cases} $$
$$ \begin{aligned}
S&=v_0t+\frac{1}{2}at^2,\\
0&=v_{y0}t+\frac{1}{2}(-g)t^2\\
&=v_0\sin\theta-\frac{1}{2}gt\\
t&=\frac{2v_0}{g}\sin\theta
\end{aligned} $$
$$ \begin{aligned}
\Delta x_1 &= v_x t\\
&= v_0\cos\theta \(\frac{2v_0}{g}\sin\theta\)\\
&=\frac{{v_0}^2}{g}\sin (2\theta )\\
&=\frac{{v_0}^2}{g}
\end{aligned} $$
$$ \begin{aligned}
g&=\frac{{v_0}^2}{\Delta x_1}\\
&=\frac{{82}^2}{686}\\
&=\frac{3362}{343}\ut{m/s^2}
\end{aligned} $$
$$ \begin{aligned}
S&=v_0t+\frac{1}{2}at^2,\\
-h&=(v_0\sin\theta)t+\frac{1}{2}(-g)t^2\\
-h&=\frac{v_0t}{\sqrt2}-\frac{1}{2}gt^2\\
\end{aligned} $$
$$ \begin{aligned}
t&=\frac{\sqrt{4 gh+{v_0}^2}+v_0}{\sqrt{2} g}
\end{aligned} $$
$$ \begin{aligned}
\Delta x_2 &= v_x t\\
&=\frac{v_0}{\sqrt2}\(\frac{\sqrt{4 gh+{v_0}^2}+v_0}{\sqrt{2} g}\)\\
&=\frac{v_0 }{2 g}\(\sqrt{4 g h+{v_0}^2}+v_0\)\\
\end{aligned} $$
$$ \begin{aligned}
\Ans&=\Delta x_2-\Delta x_1\\
&=\frac{v_0 }{2 g}\(\sqrt{4 g h+{v_0}^2}+v_0\)-\frac{{v_0}^2}{g}\\
&=\frac{v_0 }{2 g}\(\sqrt{4 g h+{v_0}^2}-v_0\)\\
&=21 \sqrt{329}-343\ut{m}\\
&\approx 37.90550009155811\ut{m}\\
&\approx 38\ut{m}\\
\end{aligned} $$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-56 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.13 |
---|---|
4-55 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.13 |
4-53 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.13 |
4-52 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.08 |
4-51 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.08 |