$$ \begin{cases}
\vec v_0 &= 8.00\times10^8\i\ut{cm/s}\\
\Delta x &= 2.00\ut{cm}\\
\vec a&=-6.70\times10^{16}\j\ut{cm/s^2}\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
t&=\frac{\Delta x}{v_x}\\
&=\frac{2}{8\times10^8}\ut{s}\\
&=2.50\times10^{-9}\ut{s}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
S&=v_0t+\frac{1}{2}at^2,\\
\end{aligned} $$
$$ \begin{aligned}
\Delta y&=v_{y0}t+\frac{1}{2}a_yt^2\\
&=(0)t+\frac{1}{2}a_yt^2\\
&=\frac{1}{2}(-6.70\times10^{16})(2.5\times10^{-9})^2\\
&=-\frac{67}{320}\ut{cm}\\
&=-0.209375\ut{cm}\\
&\approx -0.209\ut{cm}\\
&\approx -2.09\ut{mm}
\end{aligned} $$
$$\ab{c,d}$$
$$ \begin{aligned}
\vec v&=\vec v_0+\Delta \vec v\\
&=\vec v_0+\int_0^t\vec a \dd t\\
&=(8\times10^8\i)+\int_0^t(-6.70\times10^{16}\j) \dd t\\
&=8\times10^8\i-6.7\times10^{16}t\j
\end{aligned} $$
$$ \begin{aligned}
\vec v(t)&=8\times10^8\i-6.7\times10^{16}t\j,\\
\end{aligned} $$
$$ \begin{aligned}
\Ans&=\vec v\(2.50\times10^{-9}\)\\
&=8\times10^8\i-1.675\times10^8\j\ut{cm/s}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\abs{v_x} =8\times10^8\ut{cm/s}
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
\abs{v_y} &=1.675\times10^8\ut{cm/s}\\
&\approx 1.68\times10^8\ut{cm/s}
\end{aligned} $$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-45 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.08 |
---|---|
4-44 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.07 |
4-42 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.07 |
4-41 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.07 |
4-40 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.07 |