$$ \begin{cases}
t_1 &= 1.50\ut{s}\\
d&=26.7\ut{m}\\
\theta_1&=60.0\degree\\
\end{cases} $$
$$ \begin{aligned}
v_x&=\frac{\Delta x}{t}\\
&=\frac{-26.7}{1.50}\ut{m/s}\\
&=-\frac{89}{5}\ut{m/s}\\
\end{aligned} $$
$$ \begin{aligned}
\vec v_1&=v_x\i+v_x\tan\theta_1\j\\
&=\(-\frac{89}{5}\i-\frac{89\sqrt3}{5}\j\)\ut{m/s}\\
\end{aligned} $$
$$\ab{a}$$
$$S=vt-\frac{1}{2}at^2,$$
$$ \begin{aligned}
\Delta y&=v_{y1}t-\frac{1}{2}(-g)t^2\\
&=v_{y1}t+\frac{1}{2}gt^2\\
&=\(-\frac{89\sqrt3}{5}\)(1.5)+\frac{1}{2}g(1.5)^2\\
&\approx -35.21327531208902\ut{m}\\
&\approx -35.2\ut{m}
\end{aligned} $$
$$h=\Delta y \approx 35.2\ut{m}$$
$$\ab{b,c}$$
$$ \begin{aligned}
\vec v&=\vec v_0+\vec at,\\
\vec v_0&=\vec v - at\\
&=\(-\frac{89}{5}\i-\frac{89\sqrt3}{5}\j\)-(-g\j)(1.5)\\
&=-\frac{89}{5}\i+\(\frac{588399}{40000}-\frac{89 \sqrt{3}}{5}\)\j\\
&\approx \(-17.8\i-16.12052937472602\j\)\ut{m/s}\\
&\approx \(-17.8\i-16.1\j\)\ut{m/s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
v_0&=\sqrt{\(-\frac{89}{5}\)^2+\(\frac{588399}{40000}-\frac{89 \sqrt{3}}{5}\)^2}\\
&\approx 24.01481766163142\ut{m/s}\\
&\approx 24.0\ut{m/s}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\theta_{0\larr~x+}&=\tan^{-1}\frac{\frac{89 \sqrt{3}}{5}-\frac{588399}{40000}}{\frac{89}{5}}\\
&\approx 0.73592663972889\ut{rad}\\
&\approx 0.736\ut{rad}\\
\end{aligned} $$
$$\ab{d}$$
$$\title{Down}$$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-26 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.02 |
---|---|
4-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.01 |
4-23 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.31 |
4-22 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.31 |
4-21 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.31 |