11판/4. 2차원 운동과 3차원 운동

4-23 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 31. 20:25
{v0=5.00i^[m/s]a=(0.600i^0.405j^)[m/s2]t1:xmax Time \begin{cases} \vec v_0&=5.00\i\ut{m/s}\\ \vec a&=\(-0.600\i-0.405\j\)\ut{m/s^2}\\ t_1&:x_{\max}\text{ Time} \end{cases} v=v0+Δv=v0+0ta ⁣dt=5i^+0t(0.600i^0.405j^) ⁣dt=5i^0.6ti^0.405tj^=(50.6t)i^0.405tj^ \begin{aligned} \vec v&=\vec v_{0}+\Delta \vec v\\ &=\vec v_0+\int_0^t\vec a\dd t\\ &=5\i+\int_0^t\(-0.600\i-0.405\j\)\dd t\\ &=5\i-0.6t\i-0.405t\j\\ &=(5-0.6t)\i-0.405t\j\\ \end{aligned} vx=0=50.6t1 \begin{aligned} v_x&=0\\ &=5-0.6t_1\\ \end{aligned} t1=253[s]t_1=\frac{25}{3}\ut{s} (a)\ab{a} v(t)=(50.6t)i^0.405tj^v1=v(253)={50.6(253)}i^0.405(253)j^=278j^[m/s]=3.375j^[m/s]3.38j^[m/s] \begin{aligned} \vec v(t)&=(5-0.6t)\i-0.405t\j\\ \vec v_1&=\vec v\(\frac{25}{3}\)\\ &=\bra{5-0.6\(\frac{25}{3}\)}\i-0.405\(\frac{25}{3}\)\j\\ &=-\frac{27}{8}\j\ut{m/s}\\ &=-3.375\j\ut{m/s}\\ &\approx -3.38\j\ut{m/s}\\ \end{aligned} (b)\ab{b} r=r0+Δr=(0)+0tv ⁣dtr(t)=0t{(50.6t)i^0.405tj^} ⁣dt=(5t310t2)i^81400t2j^ \begin{aligned} \vec r &= \vec r_0+\Delta \vec r\\ &= (0)+\int_0^t\vec v\dd t\\ \vec r(t)&= \int_0^t\bra{(5-0.6t)\i-0.405t\j}\dd t\\ &=\(5 t-\frac{3}{10} t^2\)\i-\frac{81 }{400}t^2\j\\ \end{aligned} r1=r(253)={5(253)310(253)2}i^81400(253)2j^=(1256i^22516j^)[m](20.83333333333333i^14.0625j^)[m](20.8i^14.1j^)[m] \begin{aligned} \vec r_1&=\vec r\(\frac{25}{3}\)\\ &=\bra{5 \(\frac{25}{3}\)-\frac{3 }{10}\(\frac{25}{3}\)^2}\i-\frac{81 }{400}\(\frac{25}{3}\)^2\j\\ &=\(\frac{125}{6}\i-\frac{225}{16}\j\)\ut{m}\\ &\approx \(20.83333333333333\i-14.0625\j\)\ut{m}\\ &\approx \(20.8\i-14.1\j\)\ut{m}\\ \end{aligned}