11판/4. 2차원 운동과 3차원 운동

4-8 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 27. 13:29
{A=0B=90[km]i^ \begin{cases} \vec A &= 0\\ \vec B &= -90\ut{km}\i\\ \end{cases} {r1=75[km],θ1=37°,t1=55[h]r2=65[km]j^,t2=45[h]t3=5.0[h] \begin{cases} r_1&= 75\ut{km}, \theta_1=37\degree,t_1=55\ut{h}\\ \vec r_2&=-65\ut{km}\j, t_2=45\ut{h}\\ t_3&=5.0\ut{h}\\ \end{cases} (a)\ab{a} Σr=r1+r2=75cos37°i^+(75sin37°65)j^ \begin{aligned} \Sigma \vec r&=\vec r_1 + \vec r_2\\ &=75\cos37\degree\i+(75\sin37\degree-65)\j\\ \end{aligned} r=(75cos37°)2+(75sin37°65)2=98509750sin37°[km]63.10549519865548[km]63[km] \begin{aligned} r&=\sqrt{\(75\cos37\degree\)^2+(75\sin37\degree-65)^2}\\ &=\sqrt{9850-9750 \sin37\degree}\ut{km}\\ &\approx 63.10549519865548\ut{km}\\ &\approx 63\ut{km}\\ \end{aligned} (b)\ab{b} θr=tan1(75sin37°6575cos37°)0.3202169402769146[rad]0.32[rad] \begin{aligned} \theta_r&=\tan^{-1}\(\frac{75\sin37\degree-65}{75\cos37\degree}\)\\ &\approx -0.3202169402769146\ut{rad}\\ &\approx -0.32\ut{rad}\\ \end{aligned} (c)\ab{c} vˉ=rΣt=98509750sin37°[km]55[h]+45[h]+5.0[h]0.6010047161776713[km/h]0.60[km/h] \begin{aligned} \bar v&=\frac{\vec r}{\Sigma t}\\ &=\frac{\sqrt{9850-9750 \sin37\degree}\ut{km}}{55\ut{h}+45\ut{h}+5.0\ut{h}}\\ &\approx 0.6010047161776713\ut{km/h}\\ &\approx 0.60\ut{km/h} \end{aligned} (d)\ab{d} θvˉ=θr0.32[rad] \begin{aligned} \theta_{\bar v}&=\theta_r\\ &\approx -0.32\ut{rad}\\ \end{aligned} (e)\ab{e} vˉ=ΣSΣt=75[km]+65[km]55[h]+45[h]+5.0[h]=43[km/h]1.333333333333333[km/h]1.3[km/h] \begin{aligned} \bar v&=\frac{\Sigma S}{\Sigma t}\\ &=\frac{75\ut{km}+65\ut{km}}{55\ut{h}+45\ut{h}+5.0\ut{h}}\\ &=\frac{4}{3}\ut{km/h}\\ &\approx 1.333333333333333\ut{km/h}\\ &\approx 1.3\ut{km/h}\\ \end{aligned} (f,g)\ab{f,g} t=135[h](55[h]+45[h]+5.0[h])=30[h] \begin{aligned} t&=135\ut{h}-(55\ut{h}+45\ut{h}+5.0\ut{h})\\ &=30\ut{h} \end{aligned} rB=Σr+AB={75cos37°i^+(75sin37°65)j^}90[km]i^=(75cos37°90)i^+(75sin37°+65)j^ \begin{aligned} \vec r_{B} &= -\Sigma \vec r + \overrightarrow{AB} \\ &=-\bra{75\cos37\degree\i+(75\sin37\degree-65)\j}-90\ut{km}\i\\ &=\(-75\cos37\degree-90\)\i+(-75\sin37\degree+65)\j\\ \end{aligned} (f)\ab{f} vˉ=(6575sin37°)2+(75cos37°90)2=5390sin37°+540cos37°+718[km/h]151.2080781899763[km/h]1.5×102[km/h] \begin{aligned} \bar v&=\sqrt{(65-75 \sin37\degree)^2+(-75 \cos37\degree-90)^2}\\ &=5 \sqrt{-390 \sin37\degree+540 \cos37\degree+718}\ut{km/h}\\ &\approx 151.2080781899763\ut{km/h}\\ &\approx 1.5\times10^2\ut{km/h}\\ \end{aligned} (g)\ab{g} θv=75sin37°+6575cos37°900.1325162302897097[rad]0.13[rad] \begin{aligned} \theta_v&=\frac{-75\sin37\degree+65}{-75\cos37\degree-90}\\ &\approx -0.1325162302897097\ut{rad}\\ &\approx -0.13\ut{rad}\\ \end{aligned}