10판/3. 벡터

3-19 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 8. 7. 19:56

{p1=i^+2j^p2=2i^+1j^p3=1i^+2j^\begin{cases} \vec p_1 = \hat i + 2\hat j\\ \vec p_2 = -2\hat i + 1\hat j\\ \vec p_3 = -1\hat i + 2\hat j\\ \end{cases} Σp=2i^+5j^\Sigma\vec p = -2\hat i + 5\hat j
(a)Σp=?\abs{\Sigma\vec p}=? Σp=(2)2+(5)2=295.39[m] \begin{aligned} \abs{\Sigma\vec p}&=\sqrt{(-2)^2+(5)^2}\\ &=\sqrt{29}\\ &\approx 5.39\ut{m}\\ \end{aligned}
(b)θΣp=?\theta_{\Sigma\vec p}=? θΣp=tan1(52)1.95[rad] \begin{aligned} \theta_{\Sigma\vec p}&=\tan^{-1}\(\frac{5}{-2}\)\\ &\approx 1.95\ut{rad} \end{aligned}