10판/2. 직선운동

2-44 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 7. 30. 21:31

{t2=0.200[s]x2=0.588[m]x1=0.544[m]a=g=9.80665[m/s2]\begin{cases} t_2 = 0.200\ut{s}\\ x_2 = 0.588\ut{m}\\ x_1 = 0.544\ut{m}\\ a = -g = -9.80665\ut{m/s^2}\\ \end{cases}
(a) v0=?\abs{v_0}=? Δx=v0t+12at2,\Delta x = v_0t+\frac{1}{2}at^2, v0=x212(g)t22t2=x2t2+gt22=0.588[m]0.200[s]+9.80665[m/s2](0.200[s])2=25493320000[m/s]=12.74665[m/s]12.7[m/s]\begin{aligned} \abs{v_0}&= \frac{x_2-\frac{1}{2}(-g)t_2^2}{t_2}\\ &= \frac{x_2}{t_2}+\frac{gt_2}{2}\\ &= \frac{0.588\ut{m}}{0.200\ut{s}}+\frac{9.80665\ut{m/s^2}(0.200\ut{s})}{2}\\ &= \frac{254933}{20000}\ut{m/s}\\ &= 12.74665\ut{m/s}\\ &\approx 12.7\ut{m/s} \end{aligned}
(b)v1=?v_1=? 2aΔx=v2v02,2a\Delta x = v^2-v_0^2, v2=2aΔx+v02v^2 =2a\Delta x+v_0^2 v=±2aΔx+v02v =\pm\sqrt{2a\Delta x+v_0^2} v1=±2(g)(Δx01)+v02=±v022gx1=±(25493320000[m/s])22(9.80665[m/s2])(0.544[m])=±6072298040920000[m/s]±12.32101663916172[m/s]±12.3[m/s]\begin{aligned} v_1 &=\pm\sqrt{2(-g)(\Delta x_{0\to1})+v_0^2}\\ &=\pm\sqrt{v_0^2-2gx_1}\\ &=\pm\sqrt{\( \frac{254933}{20000}\ut{m/s}\)^2-2(9.80665\ut{m/s^2})(0.544\ut{m})}\\ &=\pm \frac{\sqrt{60722980409}}{20000}\ut{m/s}\\ &\approx \pm12.32101663916172\ut{m/s}\\ &\approx \pm12.3\ut{m/s}\\ \end{aligned}
(c)maxΔx=?\max \Delta x=? t3:=tmaxx, t_3 := t_{\max x}, v3=0 v_3=0 2aΔx=v2v02,2a\Delta x = v^2-v_0^2, xmax=x3=v32v022(g)=v02v322g=(6072298040920000[m/s])2022(9.80665[m/s2])=86747114871120760000[m]7.740025952924801[m]7.74[m]\begin{aligned} x_{\max}&=x_3 = \frac{v_3^2-v_0^2}{2(-g)}\\ &= \frac{v_0^2-v_3^2}{2g}\\ &= \frac{\(\frac{\sqrt{60722980409}}{20000}\ut{m/s}\)^2-0^2}{2\(9.80665\ut{m/s^2}\)}\\ &=\frac{8674711487}{1120760000}\ut{m}\\ &\approx 7.740025952924801\ut{m}\\ &\approx 7.74\ut{m}\\ \end{aligned}