10판/2. 직선운동

2-38 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 7. 25. 23:09

{a=1.34[m/s2]x0=0x2=806[m]v0=0v2=0\begin{cases} |a| &= 1.34\ut{m/s^2} \\ x_0 &= 0 \\ x_2 &= 806\ut{m} \\ v_0 &= 0 \\ v_2 &= 0 \end{cases}
(a) maxv=vM=v1?\max v = v_M = v_1? 2aΔx=v2v02, 2a\Delta x = v^2-v_0^2, (Make System of Equations)\text{(Make System of Equations)} {2a01Δx01=v12v022a12Δx12=v22v12 \begin{cases} 2a_{0 \to 1}\Delta x_{0 \to 1} &= v_1^2-v_0^2 \\ 2a_{1 \to 2}\Delta x_{1 \to 2} &= v_2^2-v_1^2 \end{cases} {2a01x1x=v1y22(a01)(x2x1x)=v1y2 \begin{cases} 2a_{0 \to 1}\underset{x}{x_1} &= \underset{y}{v_1}^2 \\ 2(-a_{0 \to 1})(x_2-\underset{x}{x_1}) &= -\underset{y}{v_1}^2 \end{cases} (UnderSet x,y Means Unknown Value)\text{(UnderSet x,y Means Unknown Value)} x1=x22=8062=403[m] x_1=\frac{x_2}{2} = \frac{806}{2} = 403\ut{m} v1=±a01x2=(1.34[m/s2])(806[m]) (v1>0)=270015[m/s]32.86396202529452[m/s]32.9[m/s] \begin{aligned} v_1&=\pm \sqrt{a_{0 \to 1}x_2} \\ &= \sqrt{(1.34\ut{m/s^2})(806\ut{m})}\ (\because v_1 > 0) \\ &=\frac{\sqrt{27001}}{5}\ut{m/s} \\ &\approx 32.86396202529452\ut{m/s} \\ &\approx 32.9\ut{m/s} \end{aligned}
(b) t02=?t_{0 \to 2} =? v=v0+at, v=v_0+at, t=vv0at02=t01+t12=v1v0a01+v2v1a12=v1a01+v1a01=2v1a01(=2t01)=2270015[m/s]1.34[m/s2]=2040367[s]49.05068958999181[s]49.1[s] \begin{aligned} t&=\frac{v-v_0}{a} \\t_{0 \to 2}&=t_{0 \to 1}+t_{1 \to 2} \\&=\frac{v_1-v_0}{a_{0 \to 1}}+\frac{v_2-v_1}{a_{1 \to 2}} \\&=\frac{v_1}{a_{0 \to 1}}+\frac{-v_1}{-a_{0 \to 1}} \\&=2\frac{v_1}{a_{0 \to 1}} \, (=2t_{0 \to 1}) \\&=2\frac{\frac{\sqrt{27001}}{5}\ut{m/s}}{1.34\ut{m/s^2} } \\&=20 \sqrt{\frac{403}{67}}\ut{s} \\&\approx 49.05068958999181\ut{s} \\&\approx 49.1\ut{s} \end{aligned}
(c) t23=20[s],t_{2 \to 3} = 20\ut{s}, vˉ03=?=x03t03=x02t02+20[s]=806[m]2040367[s]+20[s]=403(2700167)3360[m/s]11.67258436933585[m/s]11.7[m/s] \begin{aligned} \\ \bar v_{0 \to 3} &=? \\&= \frac{x_{0 \to 3}}{t_{0 \to 3}} \\&= \frac{x_{0 \to 2}}{t_{0 \to 2}+20\ut{s}} \\&= \frac{806\ut{m} }{20 \sqrt{\frac{403}{67}}\ut{s}+20\ut{s}} \\&= \frac{403 \left(\sqrt{27001}-67\right)}{3360}\ut{m/s} \\&\approx 11.67258436933585\ut{m/s} \\&\approx 11.7\ut{m/s} \end{aligned}
(d) (tt1) (t \le t_1) Δx=v0t+12at2,x(t)x0=v0(tt0)+12a01(tt0)2x(t)=12a01t2=12(1.34)t2=67100t2 \begin{aligned} \Delta x &= v_0t+\frac{1}{2}at^2, \\ x(t)-x_0&= v_0(t-t_0)+\frac{1}{2}a_{0\to 1}(t-t_0)^2 \\ x(t)&= \frac{1}{2}a_{0\to 1}t^2 \\ &= \frac{1}{2}(1.34)t^2 \\ &= \frac{67}{100}t^2 \end{aligned} v(t)=x˙= ⁣dx ⁣dt= ⁣d ⁣dt(67100t2)=6750t \begin{aligned} v(t)&=\dot x = \dxt{x} \\&=\dt\left(\frac{67}{100}t^2\right) \\&=\frac{67}{50}t \end{aligned} a(t)=v˙= ⁣dv ⁣dt= ⁣d ⁣dt(6750t)=6750 \begin{aligned} a(t)&=\dot v = \dxt{v} \\&=\dt\left(\frac{67}{50}t\right) \\&=\frac{67}{50} \end{aligned} (t1tt2) (t_1 \le t \le t_2) Δx=vt12at2,x2x(t)=v2(t2t)12(a12)(t2t)2x(t)=x212a01(t2t)2=80612(1.34)(2040367t)2=67100t2+2270015t806 \begin{aligned} \Delta x &= vt-\frac{1}{2}at^2, \\ x_2-x(t) &= v_2(t_2-t)-\frac{1}{2}(a_{1\to 2})(t_2-t)^2 \\ x(t) &= x_2-\frac{1}{2}a_{0\to 1}(t_2-t)^2 \\ &= 806-\frac{1}{2}(1.34)\left(20 \sqrt{\frac{403}{67}}-t\right)^2 \\ &= -\frac{67}{100}t^2+\frac{2 \sqrt{27001}}{5}t-806 \end{aligned} v(t)=x˙= ⁣dx ⁣dt= ⁣d ⁣dt(67100t2+2270015t806)=22700156750t \begin{aligned} v(t)&=\dot x = \dxt{x} \\&=\dt\left(-\frac{67}{100}t^2+\frac{2 \sqrt{27001}}{5}t-806\right) \\&=\frac{2 \sqrt{27001}}{5}-\frac{67}{50}t \end{aligned} a(t)=v˙= ⁣dv ⁣dt= ⁣d ⁣dt(6750t)=6750 \begin{aligned} a(t)&=\dot v = \dxt{v} \\&=\dt\left(-\frac{67}{50}t\right) \\&=-\frac{67}{50} \end{aligned} (t2tt2+20[s])(t_2 \le t \le t_2+20\ut{s}) x(t)=x2=806v(t)=x˙= ⁣dx ⁣dt=0a(t)=v˙= ⁣dv ⁣dt=0 \begin{aligned} x(t) &= x_2 = 806 \\ v(t)&=\dot x = \dxt{x} = 0 \\ a(t)&=\dot v = \dxt{v} = 0 \end{aligned} (Answers)(\text{Answers}) {t1=1040367[s]t2=2040367[s]\begin{cases} t_1&=10 \sqrt{\frac{403}{67}}\ut{s} \\ t_2&=20 \sqrt{\frac{403}{67}}\ut{s} \end{cases} x(t)={67100t2,(tt1)67100t2+2270015t806,(t1tt2)806,(t2tt2+20[s]) x(t)=\begin{cases} \frac{67}{100}t^2, &(t \le t_1) \\ -\frac{67}{100}t^2+\frac{2 \sqrt{27001}}{5}t-806, &(t_1\le t\le t_2) \\ 806, &(t_2\le t\le t_2+20\ut{s}) \end{cases} v(t)={6750t,(tt1)22700156750t,(t1tt2)0,(t2tt2+20[s]) v(t)=\begin{cases} \frac{67}{50}t, &(t \le t_1) \\ \frac{2 \sqrt{27001}}{5}-\frac{67}{50}t, &(t_1 \le t \le t_2) \\ 0, &(t_2 \le t \le t_2+20\ut{s}) \end{cases} a(t)={6750,(tt1)6750,(t1tt2)0,(t2tt2+20[s]) a(t)=\begin{cases} \frac{67}{50}, &(t \le t_1) \\ -\frac{67}{50}, &(t_1 \le t \le t_2) \\ 0, &(t_2 \le t \le t_2+20\ut{s}) \end{cases}