$$ \begin{cases}
m&=3.20\ut{kg}\\
k&=650\ut{N/m}\\
x_i&=0.400\ut{m}
\end{cases} $$
$$\ab{a}$$
$$K=\frac{1}{2}mv^2,W_s=\frac{1}{2}kx^2,$$
$$ \begin{aligned}
K&=W_s\\
\frac{1}{2}mv^2&=\frac{1}{2}kx^2\\
\end{aligned} $$
$$ \begin{aligned}
v&=x\sqrt{\frac{k}{m}}\\
&=\sqrt{\frac{65}{2}}\ut{m/s}\\
&\approx 5.70087712549569\ut{m/s}\\
&\approx 5.70\ut{m/s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
W_s &= \frac{1}{2}kx^2\\
&= 52\ut{J}
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
P&=\vec F\cdot \vec v\\
&=F_iv_i\\
&=0~~(\because v_i=0)
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
P&=\vec F\cdot \vec v\\
&=F_0v_0\\
&=0~~(\because F_0=0)
\end{aligned} $$
$$\ab{e}$$
$$\frac{1}{2}m{v_f}^2=\frac{1}{2}k{x_i}^2-\frac{1}{2}k{x_f}^2$$
$$v_f=\sqrt{\frac{k({x_i}^2-{x_f}^2)}{m}}$$
$$ \begin{aligned}
P(x)&=\vec F\cdot \vec v\\
&=F_f\cdot v_f\\
&=(kx)\cdot\sqrt{\frac{k({x_i}^2-{x}^2)}{m}}\\
&=325x\sqrt{\frac{65(4-25 x^2)}{2}}\\
\end{aligned} $$
$$ \begin{aligned}
\frac{\dd P}{\dd x}&=\frac{\dd }{\dd x}\(325x\sqrt{\frac{65(4-25 x^2)}{2}}\)\\
&=\frac{325 \(2-25 x^2\)}{\sqrt{\frac{2}{65}-\frac{5x^2}{26}}}=0\\
\end{aligned} $$
$$ \begin{aligned}
x_{P\max}&=\frac{\sqrt2}{5}\ut{m}\\
&\approx 0.28284271247461906\ut{m}\\
&\approx 0.283\ut{m}\\
&\approx 283\ut{mm}\\
\end{aligned} $$
'11판 > 7. 운동에너지와 일' 카테고리의 다른 글
7-42 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.23 |
---|---|
7-41 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.23 |
7-39 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.22 |
7-38 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.21 |
7-37 할리데이 11판 솔루션 일반물리학 (0) | 2024.03.21 |