10판/2. 직선운동

2-18 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 7. 24. 03:18

x=12t22t3 x = 12t^2-2t^3 v=x˙= ⁣dx ⁣dt= ⁣d ⁣dt(12t22t3)=24t6t2 \begin{aligned} v &= \dot x = \dxt{x} \\ &= \dt(12t^2-2t^3) \\ &= 24t-6t^2 \end{aligned} a=v˙= ⁣dv ⁣dt=x¨= ⁣d2x ⁣dt2= ⁣d ⁣dt(24t6t2)=2412t \begin{aligned} a &= \dot v = \dxt{v}=\ddot x = \dxtt{x} \\ &= \dt(24t-6t^2) \\ &= 24-12t \end{aligned} {x=12t22t3v=24t6t2a=2412t(2181) \therefore \begin{cases} x &= 12t^2-2t^3 \\ v &= 24t-6t^2 \\ a &= 24-12t \end{cases}\cdots({2-18-1})
(a) Ans=x(3.5)=? \Ans = x(3.5) =? (2181),(2-18-1), x(3.5)=12(3.5)22(3.5)t3=2454[m]=61.25[m]61[m] \begin{aligned} x(3.5) &= 12(3.5)^2-2(3.5)t^3 \\ &= \frac{245}{4}\ut{m} \\ &= 61.25\ut{m} \\ &\approx 61\ut{m} \end{aligned}
(b) Ans=v(3.5)=? \Ans = v(3.5) =? (2181), (2-18-1), v(3.5)=24(3.5)6(3.5)2=212[m/s]=10.5[m/s]11[m/s] \begin{aligned} v(3.5) &= 24(3.5)-6(3.5)^2 \\&= \frac{21}{2}\ut{m/s} \\&= 10.5\ut{m/s} \\&\approx 11\ut{m/s} \end{aligned}
(c) Ans=a(3.5)=? \Ans = a(3.5) =? (2181), (2-18-1), a=2412ta(3.5)=2412(3.5)=18[m/s2] \begin{aligned} a &= 24-12t \\ a(3.5) &= 24-12(3.5) \\ &= -18\ut{m/s^2} \end{aligned}
(d) maxx=? \max x = ? (2181), (2-18-1), v=24td6td2=0v = 24t_d-6t_d^2 =0 td=0,4 t_d=0,4 a(td)=(0,24),(4,24)(2182) a(t_d) = (0,24), (4,-24)\cdots({2-18-2}) {xLocalMin=x(0)xLocalMax=x(4) \therefore \begin{cases} x_{LocalMin}&=x(0) \\ x_{LocalMax}&=x(4) \end{cases} maxx=x(4) (t>0)(2183)x(4)=12(4)22(4)3=64[m] \begin{aligned} \\ \max x &= x(4) \ (\because t>0)\cdots({2-18-3}) \\ x(4) &= 12(4)^2-2(4)^3 \\ &=64\ut{m} \end{aligned}
(e) (2183), (2-18-3), te=4[s] t_e =4\ut{s}
(f) maxv=?\max v = ? (2181),(2-18-1), a=2412tf=0a = 24-12t_f =0 tf=2(2184) t_f=2\cdots(2-18-4) a˙=12\dot a = -12 vLocalMax=v(2) \therefore v_{LocalMax}=v(2) maxv=v(2) \therefore \max v = v(2) v(2)=24(2)6(2)2=24[m/s] \begin{aligned} v(2) &= 24(2)-6(2)^2 \\ &=24\ut{m/s} \end{aligned}
(g) (2184),(2-18-4), tg=2[s] t_g =2\ut{s}
(h) Ans=av=0 \Ans = a_{v=0} (2182), (2-18-2), av=0=24[m/s2] a_{v=0} = -24\ut{m/s^2}
(i) Ans=xˉ=x(3)x(0)30={12(3)22(3)3}{12(0)22(0)3}30=18[m/s] \begin{aligned} \\ \Ans &= \bar x=\frac{x(3)-x(0)}{3-0} \\ &= \frac{\left\{12(3)^2-2(3)^3 \right\}-\left\{12(0)^2-2(0)^3 \right\}}{3-0} \\ &= 18\ut{m/s} \end{aligned}