x=12t2−2t3 v=x˙=dtdx=dtd(12t2−2t3)=24t−6t2 a=v˙=dtdv=x¨=dt2d2x=dtd(24t−6t2)=24−12t ∴⎩⎨⎧xva=12t2−2t3=24t−6t2=24−12t⋯(2−18−1)
(a) Ans=x(3.5)=? (2−18−1), x(3.5)=12(3.5)2−2(3.5)t3=4245[m]=61.25[m]≈61[m]
(b) Ans=v(3.5)=? (2−18−1), v(3.5)=24(3.5)−6(3.5)2=221[m/s]=10.5[m/s]≈11[m/s]
(c) Ans=a(3.5)=? (2−18−1), aa(3.5)=24−12t=24−12(3.5)=−18[m/s2]
(d) maxx=? (2−18−1), v=24td−6td2=0 td=0,4 a(td)=(0,24),(4,−24)⋯(2−18−2) ∴{xLocalMinxLocalMax=x(0)=x(4) maxxx(4)=x(4) (∵t>0)⋯(2−18−3)=12(4)2−2(4)3=64[m]
(e) (2−18−3), te=4[s]
(f) maxv=? (2−18−1), a=24−12tf=0 tf=2⋯(2−18−4) a˙=−12 ∴vLocalMax=v(2) ∴maxv=v(2) v(2)=24(2)−6(2)2=24[m/s]
(g) (2−18−4), tg=2[s]
(h) Ans=av=0 (2−18−2), av=0=−24[m/s2]
(i) Ans=xˉ=3−0x(3)−x(0)=3−0{12(3)2−2(3)3}−{12(0)2−2(0)3}=18[m/s]